STRIDE **Workforce Development Summit**

Session Workbook

STRIDE Southeastern Transportation Research, Innovation, Development and Education Center

THIS PAGE IS INTENTIONALLY LEFT BLANK

U.S. Department of Transportation sponsored the first Workforce Development Summit through the Southeastern Transportation Research, Innovation, Development & Education Center (STRIDE) consortium housed in the University of Florida Transportation Institute (UFTI). The UFTI Technology Transfer (T2) Center, The Citadel, and Tennessee Technical University collaborated to plan, coordinate and deliver valuable sessions on traffic signalrelated topics to form the first Workforce Development Summit. The goal of the Workforce Development Summit is to assist transportation agencies to address congestion. Prior to the summit, the STRIDE research teams identified the critical need for a robust workforce, knowledge transfer of retirees to incoming professionals, and technology-related education and training opportunities critical to an efficient and safe transportation network with multimodal infrastructure components. Summit sessions were held to develop the necessary skills in technology in the transportation field related to updated traffic signal systems, equipment, resources, and approaches.

UFTI-T2 hosted a pilot eight-day summit for working professionals as well as college students and those interested in transitioning to a career in transportation. Summit sessions were delivered through live instructor-led webinars held in May of 2023. Nine sessions included topics of transportation engineering fundamentals, traffic signal basics, equity fundamentals, uniform devices, traffic signal asset management, signal safety, capacity analysis, and signal timing. Recorded sessions are available for viewing at the UFTI-T2 center website: www.techtransfer.ce.ufl.edu.

Table of Contents

Course Outline with Session Objectivesv
Introduction viii
Webinar Organization viii
Class Size and Organization viii
Target Audience viii
Course Goals and Objectivesix
Lesson Plansix
Agendax
Training Slides1
Traffic Engineering Fundamentals1
MUTCD Traffic Signals Overview
Traffic Signal Systems Asset Management
Highway Safety Analysis of Traffic Signals and Their Timing73
Basic Traffic Signal Timing114
Intro to Transportation Equity141
Traffic Signal Basics151
Highway Capacity Analysis with Signalized Intersections
Advanced Traffic Signal Timing

Course Outline with Session Objectives

Session 1 - Traffic Engineering Fundamentals

The Traffic Engineering Fundamentals course introduces the STRIDE Workforce Development Summit and familiarizes participants with basic traffic engineering vocabulary, concepts, and principles.

The course learning objectives include learning the fundamentals of the following topics:

- Characteristics of transportation systems
- Traffic descriptors, safety, and control devices
- Traffic data collections and visualizations

Session 2 - MUTCD Traffic Signals

The Manual on Uniform Traffic Control Devices Traffic Signals course introduces key principles of the uniform manual for practical application to intersections along public roads. Differences in past versions and the 2009 11th Edition Manual on Uniform Traffic Control Devices (MUTCD) are discussed. In addition, the proposed changes in the 12th edition of the MUTCD are also previewed by an active member of the National Committee on Uniform Traffic Control Devices (NCUTCD) which is responsible for formulating rules and recommendations to be incorporated into the MUTCD.

The course learning objectives include gaining knowledge of the following topics:

- Explain the history and purpose of the MUTCD
- Discuss 9 parts of the MUTCD
- Describe the differences between National and State of Florida standards
- Practical application of MUTCD concepts
- Discuss proposed changes to the MUTCD

Session 3 - Traffic Signal Systems Asset Management 3 hours

The Traffic Signal Systems Asset Management course provides the fundamentals to develop and maintain a transportation asset management (TAM) program. Attendees will be presented with available tools to identify infrastructure assets like pavement, sidewalks, signs, drainage structures, guardrails, and green spaces.

The course learning objectives include reference of details on the following:

- Industry practices in transportation asset management programs
- Processes to ensure quality assurance and control in data collected and maintained
- Data necessary for a robust TAM program to be used for decision making
- Asset lifecycle through design to replacement
- Resources to develop goals, policies, and asset inventory

2 hours

3 hours

Course Outline with Session Objectives

Session 4 - Highway Safety Analysis of Traffic Signals and Their Timing 3 hours

The Highway Safety Analysis of Traffic Signals and their Timing course familiarizes participants with the Predictive Methods of the Highway Safety Manual and its application.

The course learning objectives include learning opportunities on the following topics:

- Fundamental concepts of safety and the importance of safety assessments
- Overview of Highway Safety Manual (HSM)
- HSM predictive methods and crash modification factors

Session 5 - Basic Traffic Signal Timing

The Basic Traffic Signals Timing course is designed for those with an interest in a transportation career from a technician to an engineer. The course introduces topics in traffic signal fundamentals, timing, safety for signals, and efficiency methods to avoid congestion.

The course learning objectives include participants learning about the following topics:

- Describe how a traffic signal works
- Define key traffic signal timing terms
- Design safety intervals for traffic signals for motoring traffic and pedestrians
- Design efficiency intervals for traffic signal cycles

Session 6 - Intro to Transportation Equity

The Intro to Transportation Equity course is designed for engineers, planners, policymakers, and professionals whose work intersects transportation policies and practices. Strategic equitable transportation planning will aid practitioners and decision-makers to mitigate

potential adverse impacts of transportation projects on communities.

This course learning objectives provide participants with an insightful perspective on the following concepts:

- Types of equity and their implications
- Strategies to mitigate potential adverse impacts of transportation projects
- Effective and inclusive community outreach program
- Equitable Accessibility through AI in Transportation
- Case studies of successful initiatives and notable practices

2 hours

2 hours

Course Outline with Session Objectives

Session 7 - Traffic Signal Basics

The Traffic Signal Basics course familiarizes participants with the configuration and operation of traffic signals. This course was designed for new signal technicians, engineers, and other municipal employees interested in an introduction to traffic signals.

The course learning objectives include the following topics:

- The purpose of traffic signals
- Traffic signal field infrastructure
- Basics of signal operations
- Controller programming
- Intersection performance monitoring
- Safety considerations
- Arterial performance monitoring

Session 8 - Highway Capacity Analysis with Signalized Intersections3 hoursThe Highway Capacity Analysis with Signalized Intersections introductory session includeslectures, software demonstrations, and application examples on the HCM 7th Editionprocedures. Step-by-step instructions of methodologies, followed by application examples,are presented for different HCM chapters.

This course learning objects provides knowledge of the following learning outcomes:

- Understand the scope of HCM analyses for signalized intersections and urban streets
- Understand analysis inputs and interpret results
- Use the basics of Highway Capacity Software to perform HCM analysis

Session 9 - Advanced Traffic Signal Timing

The Advanced Traffic Signal Timing course provides attendees with a brief review of Traffic Signal Timing Basics, common occurrences of congestion, design parameters for individual signals and complete networks, and techniques to manage congestion caused by traffic signal timing.

This course learning objectives provide participants with the opportunity to learn about the following topics:

- Identify the four causes of congestion
- Design traffic signal timing values for a congested intersection
- Design traffic signal timing values for a network of congested intersections
- Identify methods for managing queues in a network of congested intersections

14 hours

2 hours

Introduction

The University of Florida Transportation Institute's Technology Transfer (T2) Center, The Citadel, and Tennessee Technical University have collaborated to provide informative sessions on traffic signal-related topics during the Workforce Development Summit. These summit sessions started on May 9, 2023, and concluded on May 22, 2023. The Workforce Development Summit, sponsored by the U.S. Department of Transportation (DOT), features free webinars that include live instructor-led presentations.

These courses encompass various subjects within the realm of traffic engineering and signals. They are designed to equip administrators, professionals, and individuals seeking an introduction to advanced traffic engineering concepts with the necessary skills and knowledge. Participants can enhance their understanding of traffic engineering principles through interactive online sessions led by experienced instructors.

The Workforce Development Summit organized by STRIDE Center, aims to foster professional growth and promote the exchange of expertise in the field of traffic signal management. Attendees can take advantage of these valuable webinars to expand their knowledge base and stay up-to-date with the latest advancements in traffic engineering practices.

Webinar Organization

The 9-session webinar series was presented by approved instructors using curriculum materials including provided readings, demonstrations, and various visual aids such as computer-generated slides, flip charts, handouts, and similar tools.

This summit was divided into distinct sessions as shown in the Agenda section. The sessions were held over the span of multiple days from May 9, 2023, to May 22, 2023.

Class Size and Organization

In order to achieve the learning objectives for this course, the target maximum course size is 100 participants per unassisted instructor.

Target Audience

Session 1 Traffic Engineering Fundamentals: This course is designed for engineers, technicians, graduate, or undergraduate students, and generally any individual interested in the fundamentals of traffic engineering.

Session 2 MUTCD Traffic Signals: This workshop is designed for traffic engineers, road designers, construction inspectors, engineering consultants, construction engineers, traffic designers, maintenance supervisors, public works directors, elected officials, and those who reference the MUTCD.

Session 3 Traffic Signal Systems Asset Management: This introductory training is designed for those building a career within public agencies including elected officials, new engineers, transportation professionals, technicians, and those with a responsibility to maintain public assets within transportation networks.

Session 4 Highway Safety Analysis Traffic Signals and their Timing: The course is intended for those interested in transportation and civil engineering, technicians, and students with limited exposure to highway safety.

Session 5 Basic Traffic Signal Timing: The intended audience for this session includes: new hires in traffic signal operations, longer-term hires that want a refresher on basic traffic signal operations, administrators, managers, or anyone else who wants a basic grasp of how signal timing works, and engineering students and recent grads who are interested in a transportation career.

Session 6 Intro to Transportation Equity: This course is designed for engineers, planners, policymakers, and professionals whose work intersects transportation policies and practices.

Session 7 Traffic Signal Basics: This course is designed for engineers, technicians, or students interested in transportation and traffic signal operations with limited or no previous experience in traffic signal fundamentals.

Session 8 Highway Capacity Analysis with Signalized Intersections: This course is designed for engineering and planning professionals who wish to gain a deeper understanding of HCM methods and their applications.

Session 9 Advanced Traffic Signal Timing: The intended audience for this session includes: those who completed the Basic Signal Timing workshop and want exposure to advanced timing, especially related to operations in congested conditions, current signal technicians interested in advanced signal timing concepts, especially those related to operations in congested conditions, and administrators, managers, or anyone else who are looking for an introduction to advanced signal timing concepts, especially those related to operations in congested conditions.

Course Goals and Objectives

The overall goal of the summit is to deliver valuable sessions on traffic signal-related topics such as data analysis, signal interpretation, and traffic technology utilization during the Workforce Development Summit. Course objectives can be found in each session objective under the Course Outlines section.

Lesson Plans

The lesson plans are designed to involve the participants interactively in the learning process. The detailed, interactive lesson plans for the course sessions are presented in individual sessions. Attainment of each course objective is evaluated through discussion periods at the end of each session.

Agenda

Session No	Course Name	Date	Start Time (EST)	Duration
Session 1	Traffic Engineering Fundamentals	May 9, 2023	9:00 AM	2 hours
Session 2	MUTCD Traffic Signals	May 11, 2023	9:00AM	3 hours
Session 3	Traffic Signal Systems Asset Management	May 12, 2023	9:00AM	3 hours
Session 4	Highway Safety Analysis Traffic Signals and their Timing	May 12, 2023	1:00PM	3 hours
Session 5	Basic Traffic Signal Timing	May 15, 2023	9:00AM	2 hours
Session 6	Intro to Transportation Equity	May 15, 2023	1:00PM	3 hours
Session 7	Traffic Signal Basics	May 16 & May 17, 2023	9:00AM	12 hours
Session 8	Highway Capacity Analysis with their Signalized Intersections	May-19, 2023	9:00AM	3 hours
Session 9	Advanced Traffic Signal Timing	May 22, 2023	9:00AM	2 hours

THIS PAGE IS INTENTIONALLY LEFT BLANK

Training Slides

Traffic Engineering Fundamentals

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	Transportation Institute Technology Transfer Center	
Traffic	Engineering Fundamentals - O	verview
Basic traff	fic engineering vocabulary, concepts, and principle	s on:
. Chara	acteristics of transportation systems,	
I. Traffic	c descriptors,	
II. Traffic	c data collection,	
V. Traffic	c control devices,	
. Traffic	c safety,	
/I. Comp	lete streets, and	
/II. Intellig	gent Transportation Systems (ITS).	
This cours any individ	se is designed for engineers, technicians, graduate dual interested in the fundamentals of transportatio	or undergraduate students and generally n engineering.
Major sou SM.IEEE, M	rce of material: Transportation Engineering FE2+ by R M.ITE, The University of Texas at El Paso, 2022	uey Long Cheu, Ph.D., P.E., F.ASCE,
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	5

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	Transportation Institute Technology Transfer Center	
Definit	ions	
#3. "A tra infrastruc	nsportation system has four interacting compone tures, and the policies."	ents: the users, the vehicles, the
 Users 	drivers, passengers, shippers, receivers, service providers	3
 Vehic 	les: cars, buses, trucks, trains, bicycles, aircraft, vessels, et	c.
 Infras 	tructures: highways, airports, ports, bus stops, depots, etc.	
 Polici 	es: design standards, traffic rules, etc.	
#4. "Trans approach transport Goals	sportation engineering is the application of scien es in the planning, design, construction, operatic ation systems and their infrastructures." : safe, efficient, sustainable	tific principles and data-driven ns, maintenance, and management of
STRII	Southeastern Transportation Research, Innovation, Development and Education Center	Transportation Explorations (HZ) - My Rang Long (Chen, Pro. D. P. F. - Acade, Schlassen, Martin, Schlassen, and Schlass, 2010

Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
I. Characteristics of Transportation System	stems
Transportation Engineering interesting dis	scipline because:
Multidiscipline:	
Everyone is an "expert".	
 Human factors: 	
Inconsistent, unpredictable.	
Political factors:	
 Engineering decision vs political decision. 	
Media:	
 Reports in TV, newspaper, Internet. 	
Customer service:	
 Customer complaints, public involvement. 	
STRIDE Southeastern Transportation Research, Innovation, Development and Education Center	Transportation Engineering FE1+ by Rawy Long Chea, Ph.D., P.E., F.AGCE, SAISEE, M.ITE, The University of Fours at EiPana, 2022

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
I. Chai	racteristics of Transportation Sy	stems
Open Desig	ness and accessibility: and and organized for efficient, convenient, an	d expeditious movement of large volumes.
 Exten Require Emph 	t and ubiquity: ire vast amounts of physical infrastructure and lasis on efficiency and competitiveness	assets.
Drive Divers	n by the demands of private users. sity of owners, operators, users, and ov	erseers:
 Entwi Move 	nement in society and the global econo ment of products and comr ¹⁰ dities.	my:
National A Counterin STRI	cademies of Sciences, Engineering, and Medicine. 2002. Making It g Terrorism. Washington, DC: The National Academies Press. <u>https</u> DE Southeatern Transportation Research, Invovatien, Development and Education Center	e Nation Safer: The Role of Science and Technology in //doi.org/10.17228/10415.

?erson-highway/surface/l	and	Person-others	Freight
Trate Zar (drive alone) Zar (carpool, get a ride) Votorcycle Bicycle Walking	Bus (regular bus transit) Bus rapid transit Light rail transit Mass rapid transit Tram Taxi Ridesharing Carsharing Bike sharing	Air Commuter rail Intercity rail Ferry	Truck Freight train Air Ship

Herbert Wertheir	n College of Engineering	OWERING THE NEW ENGINEER TO TRANSFO
Transportation Institute Technology	Transfer Center	
Stakeholders		
Regulators	Service providers	End users
Federal departments, agencies	Bus companies	Travelers
State departments, agencies	Mass transit companies	Shippers, recipients
Regional agencies	Taxi companies	
County, city, and local agencies	Ridesharing companies	
	Parcel/express delivery companies	
	Trucking companies	
	Airlines Troin componies	
	Shipping lines	
aw enforcement agencies	Vehicle manufacturers dealers	Special interest groups
	Parts suppliers	Professional organizations
	Fuel companies	1 Torrootonial organizations
	Traffic control equipment manufactu	rers
	Consulting engineers, planners	
	Educators	
	Researchers	
	Insurance providers	
STRIDE Southeastern Tra	isportation Research, opment and Education Center	Transportation Engineering F F-ASCE, SM/EEE, M/RE, The

U): Herbert Wertheim College of Engineering POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE Volume, V ■ Vehicles that pass by a certain point of the road over a time interval → volume, V. Typical count time interval is 15 minutes. • Standard unit of V is vehicles per hour (veh/h) or vehicles per hour per lane (veh/h/ln). Volume may be counted for both directions combined, or all lanes in one direction. Read the data description carefully. • Final number is usually rounded to the nearest integer value. STRIDE Southeastern Transportation Research, Innovation, Development and Education Ce

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Volum	e , <i>V</i>	
 Someti 	mes the numbers of cars and trucks are counter	d separately.
If the to	tal number of vehicles (cars+trucks) is of intere	st, V is expressed in veh/h or veh/h/ln.
 If trucks passen 	s are converted to cars equivalent, <i>V</i> is expressinger cars per hour per lane (pc/h/ln).	ed in passenger cars per hour (pc/h) or
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	Transportation Engineering FE3+ by Rway Long Cheu, Ph.D., P.E., F.AGCS, SMIEEE, M.ITE, The University of Texas at El Pana, 2022

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Volum	ne, <i>V</i> – Examples (Contd.)	
 Examp cars ar 	le 3: Calculate the volume in pc/h/ln if in one dir nd 35 trucks in 15 minutes. Assume 1 truck is eq	ection of a highway if you counted 224 uivalent to 2.5 cars.
• The co • # of ti	nversion factor 2.5 is called passenger car equivalent # of passenger cars . rucks $\times E_T \rightarrow$ equivalent # of passenger cars .	valency factor for truck (E_T).
• Remer • In urb • In rur • In urb	nber han streets max V is 1800 pc/h/ln. al highways, max V is 2000 pc/h/ln. han freeways, max V is 2200 to 2500 pc/h/ln.	These are approximate values
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	Transportation Engineering FE3+ by Roay Long Chen, Pr.D., P.E. F.AGC, ALEEC, M.EE, The University of Search & EPana, 2022

Herbert Wertheim College of Engineering	POWERING THE N	IEW ENGINEER	TO TRANSFO	RM THE FUTURE
	Class I Motortycles	*	Class 7 Four or more cale, single unit	<u></u>
Veniele Types	Class 2 Passenger cars	-		
FHWA classifies vehicles into 13 classes.		60000 900-60000	Class 8	
 Most automated counting devices are able to count in 	Chur 1		single trailer	
these 13 classes.	Four tire, single unit	(*	Class 9	
 For practical purpose, we usually count vehicles in 2 of 3 classes; 		.	servicaler	
 2 classes: passenger cars (including motorcycles), twicks (including buoge) 	Class 4 Buses		Class 10 Six or more axle, single trailer	
 3 classes: passenger cars (including motorcycles) 			Class II Five or less sole, multi trailer	
light trucks, heavy trucks (including buses).	Class 5 Two zele, six tire, single unit	- Tio	Class 12 Six axie, malti- trailer	
 The difference between light trucks and heavy trucks are 2 versus >2 axles. 		Pin	Class 13 Seven or more axle, multi-trailer	
	Class 6 Three ade, single unit	24		
		.		
SIRIDE Innovation, Development and Education Center ht	tos://www.fhwa.dol.or	w/policyinformatic	n/tmauide/tma	2013/vehicle-type

Properties To the proportion of AADT on a roadway segment or link during the Design Hour, i.e. the hour in which the 30th highest hourly volume of the target/design year. • K factor is the proportion of AADT on a roadway segment or link during the Design Hour, i.e. the hour in which the 30th highest hourly traffic flow of the year takes place. • The K factor is given by, DHV = K * AADT • D is the proportion of DHV occurring in the heavier direction, and is called the Directional Split. • D ≥ 0.5 • The Directional Design Hourly Volume, denoted by DDHV, is given by, DDHV = D * DHV STRICE Substature Transportation Reasch, the value of the direction.

JF	Herbert Wertheim Col	lege of Engineering	POWERING THE NEW ENGINEER	TO TRANSFORM THE FUTURE
and	D Factor Rang	jes		
ſ	Facility Type	K Factor	D Factor	1
	Rural	0.15 - 0.25	0.65 - 0.80	
İ	Suburban	0.12 - 0.15	0.55 - 0.65	
ł	Urban	0.07 - 0.12	0.50 - 0.60	-

32

Herbert Wertheim College of Engineering UF Intersection Turning Counts Important inputs in the design of signal timing plan. • Each approach can have up to 4 turning movements: U-turn, left turn, through, right turn. · Count all possible movements at all the approaches. • Record the counts at 15-minute intervals.

- May or may not distinguish vehicle types.
- Two-way pedestrian count at the sidewalk parallel and next to the through movement are also recorded as the fifth movement of the approach.

STRIDE Southeastern Innovation, De

Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Peak Hour Factor (PHF)	
 Many transportation engineering design problems use 	15-minute volume as input.
• One hour has four 15-minute intervals. The highest 15-	minute volume is used in the design.
That is, the system is designed for the highest 15-minute	te demand within the peak hour.
PHF converts one hour volume into 15-minute design v	volume.
• $PHF = \frac{V}{4 \times V_{15}}$	
 V is the hourly volume (veh/h). 	
 V₁₅ is the highest 15-minute count (veh/15-minute). 	
STRIDE Southeastern Transportation Research, Innovation, Development and Education Center	Transportation Englanesing HESh by Rang Long Chen (Fr.S. 9.5, F.A.G.C., SAREET, MATE, The University of Trans of ET Data, 2022

Herbert Wertheim College of Engineering	POWERING THE NE	W ENGINEER TO TRANS
Peak Hour Factor (PHF) – Example		
 Calculate the PHF given the following data: 		
	Traffic Counts of	n Urban Arterial
Solution	Time	Volume (veh)
Peak Hour 5-6 pm, V=2550 veh/hr	4:30-4:45 pm	600
	4:45-5:00 pm	500
• V15=700 Ven	5:00-5:15 pm	600
PHF = 2550/(700*4) = 0.911	5:15-5:30 pm	700
	5:30-5:45 pm	650
	5:45-6:00 pm	600
 0.25 < PHF ≤ 1. 	6:00-6:15 pm	500

UF Hert	pert Wertheim	College of E	ngineer	ing		OWERING	THE NEW C	INGINEER	TO TRANSI	FORM THE	FUTURE
Transpor	tation Institute Technology T	arafe Certer		Table 2-5. Qu	ulitative Con	parison of Tra	vel Time Data	Collection Tee	hniques		
Travel Tim	ne	Technique	Initial or Capital Casts	Operating Costs (per unit of data collected)	Required Skill or Knowledge Level	Data Reduction and/or Processing	Route Flexibility	Accuracy and Representa- theores'	Time	Sampling Rate Space	Vehicles
		Test Vehicle									
		Marsual	kw	high	kow	poor	excellent	fair	low	moderate	low
		DMI	moderate	moderate	moderate	good	excellent	good	low	high	low
		GPS	moderate	moderate	moderate	good	excellent	good	low	high	low
		License Plate Matchin	8								
		Manual	low	high	low	poor	good	fair	low	low	moderate
		Portable Computer	moderate	moderate	moderate	good	good	good	moderate	low	high
		Video with Manual Transcription	low	moderate	moderate	fair	fair	excellent	high	low	high
		Video with Character Recognition ^b	high	low	high	good	fair	excellent	high	low	high
		ITS Probe Vehicle									
		Signpost-Based	high	moderate	high	good	poor	good	moderate	low	low
		AVI	high	low	high	good	peer	excellent	high	kow	moderate
		Ground-based Radio Navigation	high	low	high	fair	good	good	moderate	moderate	moderate
		GPS	moderate	low	high	fair	good	good	moderate	high	moderate
		Cellular Phone Tracking	high	low	high	fair	good	good	high	moderate	moderate
STRIDE	Southeastern Tran	portation Research, pment and Educatio	n Center	https://ww	w.fhwa.do	t.gov/ohim	/tvtw/natm	ec/00020.p	df		

_

-

	ert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Highway S	Safety Improvement Program	(HSIP)
 National effo FHWA provid 	rt authorized by the past and present Tran les annual HSIP funding and training reso	sportation Bills. urces
 Each state D 	OT has its own HSIP to distribute funds to	projects within its state.
 As part of the Performance 	ne mechanism to distribute the HSIP fu Management program.	nds, the FHWA has established a Safety
STRIDE	Southeastern Transportation Research, Innovation, Development and Education Center	Transportation Englandering FE1+ by Rang Long Chen, Ph.D., P.S., P.A.G.S., Sati SE2, M.HT., The University of Facus at EI-Pano, 2022

<page-header><page-header><page-header><text><text><section-header><list-item><list-item><section-header>

47

Herbert Wertheim College of Engineering Transportation Institute Technology Transfer Center	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Active Safety and Passive Safety	
Active safety - Focuses on prevention. User: Driver education (defensive driving course) Law enforcement.	 Road: Design code and practice. Road safety audit.
 Vehicle: Annual safety inspection. Adjustable headlight, antilock brakes. Collision warning. Speed limiter. Tire pressure monitoring. CAV. 	Passive safety - Focuses on after the crash. • User: • Legal action. • Vehicle: • Seat belts. • Airbags. • Road: • Traffic calming.
STRIDE Southeastern Transportation Research, Innovation, Development and Education Center	Basegonation Engineering (F2+ by Rang Long Otex, Ph.D., P.C., F.Adda, Satabat, M.T., The University of Team at Etheonol(1922)

sabling (A) \$1,778,000 sabling (A) \$155,000 rident (B) \$40,000 sssible (C) \$24,000 o injury observed (O) \$6,700 operty damage only (cost per vehicle) \$5,700	Average	Economic Cost by Injury Severity or Crash, 2021
sabling (Å) \$155,000 ident (B) \$40,000 sssible (C) \$24,000 injury observed (O) \$6,700 operty damage only (cost per vehicle) \$5,700	eath (K)	\$1,778,000
ident (B) \$40,000 sssible (C) \$24,000 injury observed (O) \$6,700 operty damage only (cost per vehicle) \$5,700	isabling (A)	\$155,000
bisible (C) \$24,000 binjury observed (O) \$6,700 operty damage only (cost per vehicle) \$5,700	vident (B)	\$40,000
injury observed (O) \$6,700 operty damage only (cost per vehicle) \$5,700	ossible (C)	\$24,000
operty damage only (cost per vehicle) \$5,700 https://injuryfacts.rec.org/bil-injuries/costba/guide-to-casiouating-costba/data-detailb/	o injury observed (O)	\$6,700
https://injuryfacts.nsc.org/ail-njuries/costs/guide-to-calculating-costs/data-details/	roperty damage only (cost per vehicle)	\$5,700
	https://injuryfacts	nsc.org/all-injuries/costs/guide-to-calculating-costs/data-details/

University of Florida Transportation Institute • Technology Transfer Center (T2)

UF	Herbert Werthei Transportation Institute Technolog	m College of Engineering	POWERING THE NEW E	INGINEER TO TRANSFORM THE FUTURE					
Crash Risk Indicators									
 Populat 	tion-based rates	s, examples:							
		Fatal	injury	PDO					
Area popu	lation	No. of fatal crashes per year per 100,000 population	No. of injury crashes per year per 100,000 population	No. of PDO crashes per year per 100,000 population					
No. of regi	istered vehicles	No. of fatal crashes per year per 10,000 registered vehicles	No. of injury crashes per year per 10,000 registered vehicles	No. of PDO crashes per year per 10,000 registered vehicles					
No. of licer	nsed drivers	No. of fatal crashes per year per 10,000 licensed drivers	No. of injury crashes per year per 10,000 licensed drivers	No. of PDO crashes per year per 10,000 licensed drivers					
Highway m	nileage	No. of fatal crashes per year per 10,000 highway-miles	No. of injury crashes per year per 10,000 highway-miles	No. of PDO crashes per year per 10,000 highway-miles					
CTDINC Southeastern Transportation Research, Taxagonation Equivarianty FED- by Ray Lang Class, P.G., P.G.									
SIRIDE Innovation, Development and Education Center									

53

Herbert V	rbert Wertheim College of Engineering			NEW ENGINEER TO TRANSFORM THE F				
Crash Risk Indicators								
Exposure-based rates, examples:								
	Fatalities	Motorcycle		DWI				
Vehicle-Miles Traveled, VMT	No. of fatalities per year per million VMT	No. of motorcycle cra per 100,000 populati	ashes per year on	No. of DWI related crashes per year per 100,000 VMT3				
Vehicle-Hours Traveled	No. of fatalities per year per million VHT	No. of motorcycle cra per 10,000 registere	ashes per year 1 vehicles	No. of DWI related crashes per year per 10,000 registered vehicles				
Volume	No. of fatalities per year per 100,000 vehicles	No. of motorcycle cra per 10,000 licensed	ashes per year drivers	No. of DWI related crashes per year per 10,000 licensed drivers				
STRIDE Subjects Transportation Research. Execution Transportation Research. Execution Transportation Research.								

Herbert Wertheim College of Engineering Transportation Institute Technology Transfer Center	DOWERING THE NEW ENGINEER TO TRANSFORM THE SUTURE		
Crash Risk Indicators			
Crash rate at intersections	Crash rate for roadway segments		
Crash rate per million entering vehicles: $\begin{array}{c} RMEV = -\frac{A}{V_{\odot(7)}} & 10^6 \end{array}$ • A = number of crashes total or by type at the study location in a year. • V = ADT × no. of days in study period.	No. of crashes total or by type at the study location during the period: $RMVM = \frac{A}{VMT_{\odot} \odot_{10^6}}$ • VMT = vehicle miles traveled during the period = $ADT \times no.$ of days in the study period = length of road.		
 ADT = Average Daily Traffic entering the intersection. 	 ADT = Average Daily Traffic on the road segment. 		
STRIDE Southwatern Transportation Research, Innovation, Development and Education Center	2		
6			

Herbert Wertheim College of Engineering POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE 1112 **USDOT Connected Vehicle Testbeds** The Mission: Provide a facility where • Testbed facilities paid for by USDOT. users can test new hardware and software for the advancement of Partnerships with state DOTs, MPOs, connected vehicle technology. cities. • Opened for industry to test products. Concept of living lab - testing in reallive environment. • Each site has a unique focus. Transportation Engineering FE3+ by Ruey Long Cheu, Ph.D., P.S., F.ASCE, SMIEEE, MITE, The University of Texas at EI Paso_22(022 STRIDE

Training Slides

MUTCD Traffic Signals Overview

11

17

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Арр	Interpretation instant Technology Transfer Control S lying the MUTCD to Traffic Control S	lignals
Sect	tion 4A	
•Ge	neral - Definitions	
Sec Tra Sele shou roac cone	tion 4B affic Control Signals – General action of traffic control signals uld be based on studies of Jway, traffic and other ditions.	
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	4
ļ		

	UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	01	Transportation Institute Technology Transfer Center	
	Арр	lying the MUTCD to Traffic Control S	bignals
	Sec If ind co jus ac fol De tra afi Re res	tion 4B the engineering study dicates that the traffic ntrol signal is no longer stified, removal may be complished using the llowing steps: termine the appropriate affic control to be used ter removal of the signal. move any sight-distance strictions as necessary.	
	STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	2
7			

IIF.	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
01	Transportation Institute Technology Transfer Center	
Арр	olying the MUTCD to Traffic Contr	rol Signais
Secti	ion 4B	
 Adv 	vantages?	
They inters	increase the traffic-handling capacity of the section if:	
	 Proper physical layouts and control measures are used, and The signal operational parameters are reviewed and updated (if needed) on a regular basis (as engineering judgment determines that significant traffic flow and/or land use changes have occurred) to maximize the ability of the traffic control signal to satisfy current traffic demands. 	
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	

<page-header><page-header>

11

10

ntrol Signals dvantages npede the ovement of ese signals panacea of

<page-header>

14

17

23

University of Florida Transportation Institute • Technology Transfer Center (T2)

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Ann	Transportion Instan Technolog Transfer Center	istacle
whh	syng the moreb to traine control a	ngnais
Sec	ction 4F	
■Tra Hy En	affic Control Signals and /brid Beacons for nergency-Vehicle Access	
■An co co rig en	n emergency-vehicle traffic ntrol signal is a special traffic ntrol signal that assigns the ht-of-way to an authorized nergency vehicle.	
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	7
7		

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	Transportation Institute Technology Transfer Center	
Арр	lying the MUTCD to Traffic Contro	ol Signals
Sect • Tra Ent	ion 4H iffic Control Signals for Freeway trance Ramps	
A.Co bec cap free entime free spe occ per tha per con	ngestion recurs on the freeway attase traffic demand is in excess of the juncy of crasshes exist at the freeway rance because of inadequate ramp gring area. A good indicator of recurring way congestion is freeway operating dedi less than 30 km/h (30 mph) um gregularly for at less a heless in 50 km/h (30 mph) for at less a heless in 50 km/h (30 mph) for at less a n 50 km/h (30 mph) for at less a n 50 km/h (30 mph) for at less a set heless	
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	10

11

UF.	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
01	Transportation Institute Technology Transfer Center	·
Арр	lying the MUTCD to Traffic Control	Signals
Sect	ion 4I	
• Tra Bri	iffic Control for Moveable dges	
STRI	DE Southeastern Transportation Research, Innuarico, Development and Education Center	s

14

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	Transportation Institute Technology Transfer Center	
App	biying the MUTCD to Traffic Control s	Signals
Sec ■La	tion 4J nd Use Control Signals	
Lanı over high prof cont plac cert: and sym mea	e-use control signals are special head signals that permit or prohibit use of specific lanes of a street or way or that indicate the impending libition of their use. Lane-use rol signals are distinguished by ement of special signal faces over a ain lane or lanes of the roadway by their distinctive shapes and bols. Supplementary signs are ettimes used to explain their ning and intent.	
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	16

Training Slides

Traffic Signal Systems Asset Management

College of Engineer	ing A	
Transportation Techno Transfer (T2) Center	ology	
Traffic Module	Signal Systems 1	s Asset Management –
A Basic Guide to I	Jnderstanding the Value of Asset Mana	agement of Traffic Signals Inventory

heim College of Engineering POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE UF **STRIDE Partners** I AND A REPORT OF A DESCRIPTION OF A DES Tenr NC STATE UNIVERSITY LE THE UNIVERSITY THE CITADEL JSU MACKSON Georgia Tech ð 4 3 UF Transport FIU PLORIDA INTERNATIO

5

States were given the option of fully adopting the MUTCD or writing their own version of the MUTCD in substantial conformance with the national MUTCD.	Manual on Uniform Traffic Control Devices For International Machanes 2009 Edition
Additionally, states were given the option of adopting the national MUTCD for use along with a State supplement.	

1	L	ſ	
-	L	ľ	

Herbert Wertheim College of Engineering Transportation Institute Technology Towake Center	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTU
 Whether you are new to asset management, a seasoned practitioner or an executive, this course will help to further your understanding of asset management techniques and advance asset management practices at your agency. 	BENEFITS
STRIDE Statistics Transportation Research. Intervention, Development and Education Centerr	

20

Transportation Technology	
Inansier (12) Center	
Traffic Signal Systems	s Asset Management –
Module 4	
A Basic Guide to Understanding the Value of Asset Mana	agement of Traffic Signals Inventory
A Basic Guide to Understanding the Value of Asset Mana	agement of Traffic Signals Inventory
A Basic Guide to Understanding the Value of Asset Man	agement of Traffic Signals Inventory

j	Herbert Wertheim College of Engineering Transportation Institute Team	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	•Without Performance Measures, there is no definitive way of determining the success or failure of a specific goal.	Testing
		×
ST	RIDE Southeastern Transportation Research, Innovation, Development and Education Center	

	_
	_

<page-header>

8

Training Slides

Highway Safety Analysis of Traffic Signals and Their Timing

_

Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTUR
Crash Severity	
 Maximum Abbreviated Injury Scale (MAIS) 	
0: No injury (0)	
 1: Minor (0) 	
 2: Moderate (1-2) 	
 3: Serious (8-10) 	
 4: Severe (5-50) 	
 5: Critical (5-50) 	
6: Maximum/Fatal (100)	
 KABCO Scale for Injury Severity 	
K: Fatal injury	
A: Incapacitating injury	
 B: Non-incapacitating evident injury 	
C: Possible injury	
O: No Injury/Property Damage Only	
STRIDE Southeastern Transportation Research, Innovation, Development and Education Center	

Ur	Herbert Werth Transportation Institute Tech	neim College of Engine	ering	POWERING THE NEW EN	SINEER TO TRANSFORM THE FUT
Crash	Causatio	n - Traffic Sig	nals		
• Helps (achieve effectiv	e operations			
 Separa 	ates most of the	e conflicting movemen	ts		
Sofer r	erformance at	intersections			
- Oaler p	- the sumber of	and a sussifier of sussifier a			
 Reduce 	e the number a	nd severity of crashes	•		
• Tra • La	ade off betwee irge proportion	n safety and mobility involving red-light run	ning		
[Year	Total Traffic Fatalities	Traffic Fatalities Involving an Intersection	Traffic Fatalities Involving a Signalized Intersection	Percent of intersection fatalities occurring at signalized intersections
	Year 2015	Total Traffic Fatalities 35,484	Traffic Fatalities Involving an Intersection 9,664	Traffic Fatalities Involving a Signalized Intersection 2,923	Percent of intersection fatalities occurring at signalized intersections 30%
	Year 2015 2016	Total Traffic Fatalities 35,484 37,806	Traffic Fatalities Involving an Intersection 9,664 10,414	Traffic Fatalities Involving a Signalized Intersection 2,923 3,298	Percent of intersection fatalities occurring at signalized intersections 30% 32%
	Year 2015 2016 2017	Total Traffic Fatalities 35,484 37,806 37,133	Traffic Fatalities Involving an Intersection 9,664 10,414 10,301	Traffic Fatalities Involving a Signalized Intersection 2,923 3,298 3,271	Percent of intersection fatalities occurring at signalized intersections 30% 32% 32%
	Year 2015 2016 2017 2018	Total Traffic Fatalities 35,484 37,806 37,133 36,835	Traffic Fatalities Involving an Intersection 9,664 10,414 10,301 10,011	Traffic Fatalities Involving a Signalized Intersection 2,923 3,298 3,271 3,274	Percent of intersection fatalities occurring at signalized intersections 30% 32% 32% 33%

n 🗥 🛎
Safe Safe Post-Crash Speeds Roads Care
Human and utility is Designed to provide the second bin to
valibility. Innee for different analysis at the crush users to merv through this, traffic incident a space, and elering management, and users to hoardo and etter activities.
19 19 19 19 19 19 19 19 19 19 19 19 19 1

Quiz		
Vhich of	the following definitions best describe Nominal Safety?	
A)	The historic and long-term objective safety of a location based on crash data	
B)	A measure of safety (e.g., crash frequency) that is not adjusted for long-term growth in traffic volumes	
C)	An absolute statement about the safety of a location based only on its adherence to asset of design standards	
D)	A subjective description of a location's safety based on public opinion surveys	

Herber	t Wertheim College	of Engineering	POWERING THE NEW ENGIN	NEER TO TRANSFORM THE FUTUR
Transportation	Institute Technology Transfer Center			
Highway	Safety Manu	al		
 HSM presents of for estimating s streets to inform making process 	contemporary scientific afety performance of h n the highway transpor s	> methodologies righways and tation decision-	Stythen Partners Meetify read 1000 App21 1 Identify App21	Reacting In and program projects cation - First 8 develot how addry actions for the annual extension
Ŕ	 	駿	Operations and Maintenance halfs and Operations Explorent modify acting conditions to naintain and improve andre and efficient operation HSBN Applications – Nart Invert C • Gently approximation – Nart Invert C • Gently approximation provided candidense approximations of proversit candidense approximations	Project Manning & Preliminary Engineering Safety Explores and Project Managers identify alternatives and does not be profered states HOM Applications - Yant B I dentify spraced cash patterns for the project I dentify spraced many factors and the denters.
DEFINITIVE; STATE-OF-THE- ART INFO	WIDELY ACCEPTED	RESEARCH- BASED	Moddy policies and design criteria for future planning and design Project Manager, Design and Project Manager, Design and Project Manager, Design and	Construction Generation
			Evaluate here performance design frames and compared and the design exception resultant skyl-1007-80M Part Energy TDVAL redd Charlywersahlmanaanal	e messues are inspached by statistic er scan brequeery during det

2	0
,	ч
~	-

UF.	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
01	Transportation Institute Technology Transfer Center	
Safety	Performance Function - Exampl	e
Example intersecti	: Use the given SPF, predict the number of multi-veh	icle crashes at an urban, four-legged signalized
The majo per day	r road traffic volume is 25,000 vehicles per day and	the minor road traffic volume is 10,000 vehicles
	$NN_{\text{predicted}} = \exp(-10.99 + 1.07 \ln(A))$	mm) + 0.23 ln(<i>A</i>
Solution	:	
	$NN_{\text{predicted}} = \exp(-10.99 + 1.07 \ln(25,000))$	$0) + 0.23 \ln(10,000))$
	= 7.13 multi-vehicle crashes	per year
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	22

UF	Herbert Wertheim College of Engineering Transportation Institute Technology Transfer Center	POWERING THE NEW ENGI	NEER TO TRANSFORM THE FUTURE
Cra	sh Modification Factors		
Cra of c CM	sh modification factors (CMFs) represent th one specific condition, when all other condition Fs are applied to estimate the crashes after unrent	e relative change in crash frec ns and characteristics remain implementation of a counterme	quency due to a change constant. easure or a treatment.
		0	D
	(•	
Alter	mative 1		
		(0)	
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center		27

UF	Herbert Wertheim College of Engineering Transportation Institute Technology Transfer Center		POW	/ERI)	IG THE N	EW ENG	INEER TO	TRAN	SFORM	THE FUTURE
Select	ing CMFs									
 Primary same (or counterm 	 Primary Goal: Select a CMF that was developed under the same (or very similar) conditions as the location for which the contextrement in his/ner can lived. 									
countern	includure is being applied.	Countermease	ONF CONVEY	car(s)	Quality	Cresh Type	Crash Severity	Area Type	Reference	Comments
 Characte 	eristics to consider:		1,346	-34.6		AU	A1	A0	.2011	Hote CMF applies only to loss. (#EAD MORE)
Counte	ermeasure type		0.408	55.2	****	AI	A barious injun;1,8 initiar injun;1,5 (possible injun;1	N	.2011	hister, CHF applies selly to tess
Crash	severity		0.563	45.7	*****	AI	A (serious injury)(8) minor injury)(C (preside injury)	N	.2011	Note: CHF applies only to base. (READ MORE)
 Facility Area to 	r type		1.002	42	****	Al	A0	~	.2011	note: CMP applies only to toss(READ MORE)
 AADT 	ranges		0.467	\$3.3	***	Al	Allabelia Burnini surined Duruini surined bruini eldicolg	A1	GBOLOGAH ET AL., 2029	Hote CAP apples only to loss. (BEAD MORE)
Prior o Star ra	onditions		0.423	37.7	***	Al	Al	Al	GEOLOGAH ET AL, 2019	Here: CHF apples only to loss. (READ MORE)
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center									43

<page-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header>

44

ASHTO)
earch Program (NCHRP) - Project 17-71A
earch Program (NCHRP) - Project 17-71A

Safety Performance Functions by Facility Type						
HSM Chapters/Facility Type	Undivided Roadway	Divided Roadway	Stop Contr Leg	Intersec ol on Minor g(s)	Signalized	
	Segment	Segment	3-Leg	4-Leg	3-Leg	4-Leg
Chapter 10 - Rural Two-Lane, Way Roads	Two	-	~	1	-	~
Chapter 11 - Rural Multilane Highways	e 🗸	1	~	1	-	~
Chapter 12 - Urban and Subur Arterials	ban ✓	~	~	~	~	~

UF	Herbert Wertheim College of Engineering			POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE			FORM THE FUTURE		
Inter	Intersection Function								
	Street	Deceler Comple	ation eted	Beg Deceler	in ration	Begin Pe Rea	erception ction		
	Cross 9			Į	D		œ		
	ĺ	Stopping queue or storage length	Maneuver distan	ce	Decision dista	nce			
	ľ	F	unctional or impact ler	ngth		·····,			
Intersec	ction Cra	ishes							
Crash T	Гуре?								
Within 2	250 ft?								
STRI	DE	Southeastern Transportation Research, Innovation, Development and Education Center	,				61		

78

 Image: Status and Status

83

_			

Right I	urns CMF		Num	har of approaches	with eight turn long	
Turn Lanes CMF _{3i}	Intersection Type	Intersection Traffic Control	One approach	Two approaches	Three approaches	Four approa hes
	Three-leg	Minor-road STOP control	0.86	0.74		
	intersection	Traffic signal	0.96	0.92	•	•
	Four-leg	Minor-road STOP control	0.86	0.74		
	intersection	Traffic signal	0.96	0.92	0.88	0.85

Herbert Werthe	eim College of Engineering POWERING THE	NEW ENGINEER TO TRANSFORM THE FUTURE
Vehicle-Pedest	rian Collisions at Signalized Interse	ections – CMFs
Bus Stop - CMF _{1p}	Number of Bus Stops within 1,000 ft of the Intersection	CMF _{1p}
	0	1.00
	1 or 2	2.78
	3 or more	4.15
School- CMF _{2p}	Presence of Schools within 1,000 ft of the Intersection	CMF _{2p}
	No school present	1.00

O	0
Э	0

Acohol Sales Establishments CMF ₁₀ 0 100	Herbert Werthein	n College of Engineering Power	NG THE NEW ENGINEER TO TRANSFORM THE I
Alcohol Sales Number of Alcohol Sales Establishments CMF ₃₀ Establishments within 1,000 ft of the Intersection 1,00	Vehicle-Pedestri	an Collisions at Signalized In	tersections – CMFs
Alcohol Sales Number of Alcohol Sales Establishments CMF ₃₀ Establishments Of Mode to the Intersection 1.00			
CMF _{3p} 0 1.00	Alcohol Sales Establishments	Number of Alcohol Sales Establishments within 1,000 ft of the Intersection	CMF _{3p}
	CMF _{3p}	0	1.00
1-8 1.12		1-8	1.12
9 or more 1.56		9 or more	1.56

Herbert Wertheim College of Engineering Transportation Institut Technology Transle Center	POWEBING THE NEW ENGINEER TO TRANSFORM THE FUTURE
HSM 2 nd edition – Coming Soon	
Methods for incorporating bike & pedestrian consid	erations in safety management
New Bike & pedestrian predictive models in Part C	
 Includes systemic methods for pedestrian and bicy 	cle application
Methods for calibrating safety performance function	ns with state/regional data
New Predictive Models (Additional Intersections (N	CHRP 17-78) and Roundabouts (NCHRP
17-70), New Arterial models (NCHRP 17-58))	
New Available Research Summary	
 Restructured Part D 	
https://www.highwaysafetymanual.org/Documents/H	ISM2 GeneralUpdate 20220606b.pdf
'RIDE Southeastern Transportation Research, Innovation, Development and Education Center	101

107

Herbert Werthei Transportation Institute Technology	im Col	llege of E	ngineeri	ng	POWE	RING THE	NEW ENGI	NEER TO TRA	INSFORM THE	FUTURE
Data-Driven Safety Management Processes <u>Select Countermeasures -</u> Summary of crash types and possible signal modifications to benefit safety						у				
		Collisi	on with And	other Vehicle	1		Sing	le-Vehicle C	ollision	
Change	Angle	Head-On	Rear-End	Sideswipe Same Direction	Sideswipe Opposite Direction	Collision with Bicycle	Collision with Parking Vehicle	Collision with Pedestrian	Overturned	Run Off Road
Provide left-turn signal phasing	х	х	х	x	x					
Optimize clearance intervals	х		х							
Restrict or eliminate turning maneuvers (including right turns on reds)	x	x	x	x		x		x		
Employ signal coordination	x		х					x		
Implement emergency vehicle pre- emption	x	x	x	x	x	x	x	x		
Improve traffic control of pedestrians and bicycles			x			x		x		
Remove unwarranted signal			х			х		x		
Provide/improve left-turn lane channelization*	x	x	x	×	x					
Provide/improve right turn lane channelization*	x		x	x		x		x		
				Tret	the Stephal Trimin	of Memorial Ca	impter 3 - Off	ice of Operatio	ns (dot.gov)	

Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Data-Driven Safety Management Pr	rocesses
Safety Effectiveness Evaluation	Likeling Effortweenerging Kalander Denner S Montella Program Montella Program Denner S Seciel Contemponeners Denner S
 Monitoring implementation 	Economic Appendia Depinit
 Helps us determine whether the countermeasure if efferences modification 	ective or need
 Before/After analysis 	
 Regression-to-the mean 	
 Empirical Bayes 	
STRIDE Southeastern Transportation Research, Innovation, Development and Education Center	15

113

UF	Herbert Wertheim College of Engineering	OWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Quiz		
Which too	ol is used to estimate the benefits associated with a particular sa	fety countermeasure?
A)	Benefit-cost ratio	
B)	Crash modification factor	
C)	Empirical Bayes	
D)	Network screening tool	
STR	IDE Southeastern Transportation Research,	15
SIL	Importion, Development and Education Center	

ools								
				Appli	cation			
	Tools	HSM Predictive Analysis (SPF-based)	HSM Predictive Analysis (CMF-based)	Rural Roadways	Urban Roadway	Ramps and Freeways	Intersection Evaluations	
	HSM spreadsheets	√		<i>s</i>	√ 		1	
	IHSDM	~		1	1	1	1	
	ISATe	 V 				1		
	SPICE		1				1	
	HSS	√		1	~	1	1	
	TxDOT-specific tools	~	v	×			×	

116

1			
,			

117

	UF.	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE					
_		Transportation Institute Technology Transfer Center						
	Refere	ences						
	https://safe	ty.fhwa.dot.gov/intersection/signal/						
	https://safe	ty.fhwa.dot.gov/intersection/signal/fhwasa13027.pdf						
	https://www.	v.fdot.gov/traffic/trafficservices/intersection-operations.shtm						
	 https://safe 	ty.fhwa.dot.gov/intersection/signal/fhwasa09020.pdf						
	 https://highways.dot.gov/public-roads/winter-2022/03 							
	 https://www 	v.its.dot.gov/meetings/pdf/USDOT Intersection Safety Webinar.pdf						
	 https://safe 	ty.fhwa.dot.gov/intersection/ssi/fhwasa21008.pdf						
	 https://high 	ways.dot.gov/sites/thwa.dot.gov/tiles/2022-06/sspst.pdf						
	STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	110					
_								

119

Training Slides

Basic Traffic Signal Timing

8

Processed Typically minor street • 4 & 8 typically minor street • 14 & 5 typically minor street • 3 & 7 typically minor street

 Wether Wethelm College of Engineering
 Descent and the end of the end o

Asses can show together ses for efficient service angaing streets ontroller

Internet Workstein College of Engineering Internet to the contract of the contrel of the contract of the contract of the contract of the contrac

_

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE					
Detector Type Affects Minimum Green							
 Stop b Only Setbac Optio Optio 	ar detection will detect queues naturally need to account for drivers' expectation & detectors will have undetected queui n 1: Design minimum green for queue n 2: Variable minimum green	y is ng clearance					
STRI	Southeastern Transportation Research, Innevetion, Development and Education Center	1:46 PM	I				

Minimum Green for Stop Bar Detection – STM2 Page 6-6						
Only r STM	need to account 2 Recommenda	: for drivers' ex ations:	pectations			
		Phase Type	Facility Type	Minimum Green (Seconds)		
			Major Arterial (> 40 mph)	10 to 15		
		Through	Major Arterial (≤ 40 mph)	7 to 15		
		Through	Minor Arterial	4 to 10		
			Collector, Local, or Driveway	2 to 10		
		Left Turn	Any	2 to 5		

2: um Green _I le lane app	Parameters -	- STM2 Page	6-7						
le lane app	roaches		Setback Detectors Option 2: Suggested Variable Minimum Green Parameters – STM2 Page 6-7						
Table values are based on single lane approachesWhat changes for multilane approaches?									
Minimum Green (Seconds)	Maximum Variable Initial (Seconds)	Seconds Added per Actuation ¹							
10	25	2.0							
10	31	2.0							
10	37	2.0							
10	43	2.0							
	Minimum Green (Seconds) 10 10 10 10 10 dded per actuatio	Minimum Green (Seconds) Maximum Variable Initial (Seconds) 10 25 10 31 10 37 10 43 dded per actuation assumes approximatel	Minimum Green (Seconds) Maximum Variable Initial (Seconds) Seconds Added per Actuation1 10 25 2.0 10 31 2.0 10 37 2.0 10 43 2.0 1dde per actuation assumes approximately 2-second headways. 2-second headways.						

32

UF	Herbert Wertheim Co	bllege of Engineering	POWERING THE NEW ENGINEER TO TRANSP	ORM THE FUTURE			
Choos	Choose Minimum Walk – STM2 Page 6-18						
• MUTC • STM2 • Reme	 MUTCD prefers at least 7 seconds, allows as low as 4 STM2 provides recommendations (below) Remember the purpose of Walk Interval 						
		Cor	ditions	Walk Interval (Seconds)			
		High-pedestrian-volume area event venue)	(e.g., school, CBD, or sports and	10 to 15			
		Typical pedestrian volume an	d longer cycle length	7 to 10			
		Typical pedestrian volume an	d shorter cycle length	7			
		Negligible pedestrian volume	and otherwise long cycle length	4			
STRI	DE Southeastern Transport	lation Research, nt and Education Center					

42

Herbert Wertheim College of Engineering

Learning Outcomes

- After Traffic Signal Timing for Efficiency, you will be able to...
- Determine intersection cycle length for an uncongested intersection
- Calculate phase splits for an uncongested intersection
- Use a time-space diagram
- •Calculate resonant cycle lengths for uncongested systems of intersections

STRIDE Southeastern Transportation Research, Innovation, Development and Education Cere

Determine Per Lane All Movements Have	Flow Rates – Exclusive Lanes			
		4	Û	\$
	Movement Volume	300	500	700
	Peak Hour Factor	0.95	0.95	0.95
1 1 1 1 1 1	# of Lanes	1	2	2
~ \	`	Pł	n 2	Ph 5
	Movement Flow Rate	316	526	737
	Phase Flow Rate	316	526	737
	Per Lane Flow Rate	316	263	369
	Fer Lane How Mate	510	205	505

UF	Herbert Wertheim Co Transportation Institute Technology Transfer	llege of Engineering	POWERI	ING THE NEW EN	SINEER TO TRANSFORM THE FUTURE
Detern One of	nine Per Lane r More Movem	Flow Rates - ents Have S	- hared Lane	S	
		450	325	225	Movement Volume
_		0.95	0.95	0.95	Peak Hour Factor
		2	2	0	# of Lanes
- [1]	1 1 1 1	Ph 1	Ph	6	
1]	474	342	237	Movement Flow Rate
11	111	474	579		Phase Flow Rate
		237	290		Per Lane Flow Rate
		Ś	Û	Ê	
STRI	DE Southeastern Transport	ation Research, 1 and Education Center			

_				

UF Hert	pert Wertheim Co aton Institute Technology Travel	ollege of En	gineering	POWERING THE NEW EN	IGINEER TO TRANSFO	M THE FUTU	
Look Up (Cycle Leng	gth					
STM2 Page 5-26			Critical Volume		Cycle	le Length	
			1130	and thus	1	10	
Cycle Length (seconds)	Number of Cycles Per Hour	Lost Ti Per Cy (Secon	Effective me Green Tin cle Per Cycle ds) (Seconds	ne Number e of Vehicles) Per Cycle	Maximum Number of Vehicles Per Hour		
60	60	20	40	16	933	-	
70	51	20	50	19	1000		
80	45	20	60	23	1050	-	
90	40	20	70	27	1089	-	
100	36	20	80	31	1120	4420	
110	33	20	90	35	1145	1130	
120	30	20	100	39	1167		

55

UF	Herbert Wertheim College of Engineerin Tergeratos heldes Technology Tarder Ceter			POWERING THE	NEW ENGINEER TO TRANSFORM THE FUTURE				
Calculate Portion by Barrier									
		Portion by Barrier							
		Max of Ph 1+2 and Ph 5+6 divided by Critical Volume	Max of and P divid Critical	Ph 3+4 h 7+8 ed by Volume					
		0.583	0.4	17					
		659 / 1130	471/	1130					
STRI	STRIDE Studenstein Transportation Research, Institute, Development and Education Creater								

56

UF	Herbert Werthei Tamportation Institute Technolog	m College of Engineering	POWERING THE NEW ENGIN	VEBING THE NEW ENGINEER TO TRANSFORM THE FUTURE			
Calculate Portion by Phase							
	Portion by Phase						
Ph 1 ,	/ Ph 1+2	Ph 2 / Ph 1+2	Ph 3 / Ph 3+4	Ph 4 / Ph 3+4			
0	.429	0.571	0.524	0.476			
Ph 5 ,	/ Ph 5+6	Ph 6 / Ph 5+6	Ph 7 / Ph 7+8	Ph 8 / Ph 7+8			
0	.560	0.440	0.445	0.555			
369	9 / 659	290 / 659	118 / 265	147 / 265			
STRIDE Southeastern Transportation Research. Instantion, Development and Education Center							
UF	Herbert Wertheim Col	lege of Engineering	POWERING TH	E NEW ENGINEER TO TRANSFOR			
--	--	--	-------------	----------------------------	--	--	--
Calculate Phase Splits							
		Phase Splits					
	Cycle Lengt	Cycle Length x Portion by Barrier x Portion by Phase					
	Ph 1	Ph 2	Ph 3	Ph 4			
	28	37	24	22			
	Ph 5	Ph 6	Ph 7	Ph 8			
	36	28	20	25			
	110 x 0.583 x 0.56 110 x 0.417 x 0.555						
STRIDE Southeastern Transportation Research,							

_UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	Transportation Institute Technology Transfer Center	
Reso	nant Cycle Lengths	
Use g	geometry to determine cycle lengths	
 Use v 	when intersection spacings are similar	
STR	DE Southeastern Transportation Research, Innovation, Development and Education Center	

Transportation Institute Technology Transfer C	ege of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE				
Calculating Cycle Length Options						
Resonant Cycle Type	Cycle Length (sec)	Offset Pattern (sec)				
Simultaneous	C = (d/v)	All 0				
Single Alternate	C = 2 (d/v)	0, C/2, 0				
Double Alternate	C = 4 (d/v)	0, 0, C/2, C/2, 0				
Triple Alternate	C = 6 (d/v)	0, 0, 0, C/2, C/2, C/2, 0				
= average intersection = speed in ft/sec	spacing in feet					
TRIDE Southeastern Transportation	in Research, ind Education Center					
	Instant and compared with the second seco	Resonant Cycle Cycle Length Options Simultaneous C = (d/v) Single Alternate C = 2 (d/v) Double Alternate C = 4 (d/v) Triple Alternate C = 6 (d/v) = average intersection spacing in feet = speed in ft/Sec ERICE Surviver, Directories Reservit, Inswitch, Directories and Education Creater				

Herbert Wer	theim College of E	Engineering	POWERING	THE NEW ENGINE	ER TO TRANSFORM THE FUTURE	
Calculating Cycle Length Options (cont.)						
	Average Spacing (mile)	Average Spacing (ft)	Speed (mph)	Speed (ft/sec)	Cycle Length Options (sec)	
Simultaneous	0.25		25			
Single Alternate	0.25		25			
Double Alternate	0.25		25			
Triple Alternate	0.25		25			
STRIDE Southear	tern Transportation Research, n, Development and Educatio	in Center				

Choosing a Cycle Length						
	Average Spacing (mile)	Average Spacing (ft)	Speed (mph)	Speed (ft/sec)	Cycle Length Options (sec)	
Simultaneou	is 0.25	1320	25	36.7	C = d/v = 36	
Single Alterna	ate 0.25	1320	25	36.7	C = 2d/v = 72	
Double Altern	ate 0.25	1320	25	36.7	C = 4d/v = 144	
Triple Alterna	ite 0.25	1320	25	36.7	C = 6d/v = 216	

7	3

Herbert Wertheim College of Engineering

Learning Outcomes

Having completed Traffic Signal Timing for Efficiency, you should be able to...

- •Determine intersection cycle length for an uncongested intersection
- Calculate phase splits for an uncongested intersection
- •Use a time-space diagram
- Calculate resonant cycle lengths for systems of intersections

STRIDE Southeastern Transportation Research, Innovation, Development and Education Ce

74

Traffic Signal Timing by Critical Lane Analysis Based on the Critical Movement Analysis method presented in the NCHRP Report 812: Signal Timing Manual, Second Edition

Portion by Phase					
Ph 1 / Ph 1+2 Ph 2 / Ph 1+2 Ph 3 / Ph 3+4 Ph 4 / Ph 3+4					
Ph 5 / Ph 5+6	Ph 6 / Ph 5+6	Ph 7 / Ph 7+8	Ph 8 / Ph 7+8		

	Phase Splits				
Cycle Length x Portion by Barrier x Portion by Phase					
Ph 1 Ph 2 Ph 3 Ph 4					
Ph 5	Ph 6	Ph 7	Ph 8		

Training Slides

Intro to Transportation Equity

Lower Rates of Obesity = Higher Rates of Commuters Walkability Local Accessibility Chronic Disease Markers Travel Choice Environmen Blood Pressu Lipids Health Care Utilization Costs Pedestrian Netwo Sidewalks Obesity BMI Built Physical Activity Transit/Road egional Accessibility mmohebbi@ufl.edu

8

10

s	TRATEGIES TO	COMBAT INEQ	UITIES	
A. Develop				
- Mał	- Diversifyir ing the Case for Partners - Understa	ng Transportation Choices ship among Different Transpo anding the Key Issues of	ortation Agencies	
* Economic V	itality * Access * Social Co	phesion * Potential Harms (tr	affic injury, pollution, et	c.)
				_
	OLICIES	& PROCED	URES -	٦
	OLICIES	& PROCED	URES -	
STAN	OLICIES		VRES -	
REGULATIONS	OLICIES AARDS COM		PURES -	
	OLICIES DARDS		PLAN	OLUTION

26

27

Training Slides

Traffic Signal Basics

	rbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Objective	es of This Series	
To far signa	miliarize participants with the configues Is, including:	ration and operation of traffic
•	The purpose of traffic signals	
•	Traffic signal field infrastructure	
•	Basics of signal operations	
•	Controller programming	
•	Intersection performance monitorin	Ig
•	Safety considerations	
•	Arterial performance monitoring	
STRIDE	Southeastern Transportation Research, Innovation, Development and Education Center	

Herbert Wertheim College of Engineering Temporator Institute Technology Transfer Center

Objectives of This Session

To familiarize participants with traffic signal applications – including the benefits, advantages, and disadvantages of their use. The engineering study process needed to justify the installation of a new signal, per the requirements of the Manual on Uniform Traffic Control Devices (MUTCD) will be described. Additional considerations, such as the need to provide for all road users at a signal, will also be discussed.

STRIDE Southeastern Transportation Research, Innovation, Development and Education Cen

7

UF

Traffic Signal Purpose

The MUTCD defines a traffic control signal as:

ge of Engineering

 Any highway traffic signal by which traffic is alternatively directed to stop and permitted to proceed

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

 Traffic is defined as pedestrians, bicyclists, ridden or herded animals, vehicles, streetcars, and other conveyances either singularly or together while using any highway for purposes of travel

STRIDE Southeastern Transportation Research, Innovation, Development and Education C

Herbert Wertheim College of Engineering UF

Traffic Signal Purpose

- •The MUTCD describes that traffic control signals can be
 - Ill-designed
 - Ineffectively placed
 - Improperly operated, or
 - Poorly maintained, with resulting outcomes of excessive delay, disobedience of the indication, avoidance and increases in the frequency of collisions

STRIDE Southeastern Transportation

13

UF Advantages of Traffic Signals Traffic signals that are properly located and operated are likely to:

rt Wertheim College of Engineering

- · Provide for orderly movement of traffic
- · Increase traffic capacity of the intersection
- · Reduce the frequency of certain types of crashes (e.g., right-angle crashes)
- · Provide for continuous or nearly continuous movement of traffic along a given route

POWERING THE NEW EN

NEER TO TRANSFORM THE FUTURE

· Interrupt heavy traffic to permit other traffic, vehicular or pedestrian, to cross

STRIDE Southeastern Tran

14

erbert Wertheim College of Engineering UF **Disadvantages of Traffic Signals** · Unjustified or improper traffic control signals can result in one or more of the following disadvantages: Excessive delay · Excessive disobedience of the signal indications · Increased use of less adequate routes as road users attempt to avoid the traffic control signals · Significant increases in the frequency of crashes (especially rear-end crashes)

STRIDE Southeastern Transportation Research, Innovation, Development and Education Center

UF	Herbert Wert	neim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE	
Traffic Signal Warrants				
Hannal on U	Alfora (cl) Derice Market and all and all and all all all all all all all all all all	Section 4C.01 Studies and Easters for Just Standards An engineering study of traffic condition the location shall be performed to determine particular location.	ifying Traffic Control Signals a, pedestrina characteristics, and physical characteristics of whether installation of a traffic control signal is justified at a	
STRI	DE Southeaste	rn Transportation Research, Development and Education Center		

UF	Herbert Wertheim College of Engineering		DOWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE		
Traffic	Traffic Signal Warrants				
Warra	nt Name		Description		
Warrant	1 Eight-Hour Vehicular Volume	This warrant is used when a lar volume on the major street is so delay. This warrant requires	rge volume of intersecting traffic or where the traffic excessive that traffic on the minor street suffers undo at least eight hours' worth of traffic volume data.		
Warrant	2 Four-Hour Vehicular Volume	The Four-Hour Vehicular Volume where the volume of intersecting traffic control signal. This warran	e signal warrant conditions are intended to be applied traffic is the principal reason to consider installing a it requires at least four hours' worth of traffic volume data.		
CTDU	CTDIDE Southeastern Transportation Reservity				
SIRI	Innovation, Developm	ent and Education Center			
9					

UF	erbert Wertheim College of Engineering		DOWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE	
Traffic Signal Warrants				
Warrant	Namo		Description	
Warrant	Crash Experience	The Crash Experience signal warra severity and frequency of crashes a	nt conditions are intended for application where the rethe principal reasons to consider installing a traffic control signal.	
Warrant 8	Roadway Network	Installing a traffic control signal at concentration and organiz	some intersections might be justified to encourage ation of traffic flow on a Roadway Network.	
Warrant S	Intersection Near a Grade Crossing	The Intersection Near a Grade Cro where none of the conditions descri but the proximity to the intersectic controlled by a STOP or YIELD sign	esing signal warrant is intended for use at a location ibed in the other eight traffic signal warrants are met, on of a grade crossing on an intersection approach is the principal reason to consider installing a traffic control signal.	
STRIDE Invasion: Transporterior Reservo.				

11

17

igineering Fundamentals Kickoff Summit Taffic Signals Overview gnal Systems Asset Management
gineering Fundamentals Kickoff Summit Taffic Signals Overview jnal System Saset Management
gineering Fundamentals Kickoff Summit Yaffic Signals Overview gnal Systems Asset Management
igineering Fundamentals Kickoff Summit Taffic Signals Overview gnal Systems Asset Management
ngineering Fundamentals Kickoff Summit Traffic Signals Overview gnal Systems Asset Management
igineering rundamentais Alckoff Summit Iraffic Signals Overview gnal Systems Asset Management
gnal Systems Asset Management
ghai bysteriis hisset management
Safoty Inalyzeic Traffic Signals and their Timing
fic Signal Timing
tation Equity Fundamentals
mal Basics
Capacity Analysis with Signalized Intersections
d Traffic Signal Timing
d Traffic Signal Timing

Herbert Wertheim College of Engineering Transportation Institute Technology Transfer Center	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Controller Phasing	
 Movement A term that describes user actions at an intersection (e.g., northbound vehicular left turn, or pedestrian using the west crosswalk). Movements can be permitted, requiring users to yield to others when given a green indication, or protected, which gives users the right-of-way without any conflicts. 	בן בי ייד חיור

	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE			
	Transportation Institute Technology Transfer Center	,			
Phasing					
Phase					
 A traffic signal phase is a timing process, within the signal controller, that facilitates serving one or more movements at the same time Phases are tvoically numbered for ease of 					
identification					
 Through movement phases usually even numbered 					
 Left turn movement phases usually odd numbered 					
STRIDE Solutions Tangontion Reserve.					

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Phasi	ng	
	Three-Phase Intersection • Alternating between Two Stree • Protected Turning Movements • Concurrent Pedestrians	
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	
10		

I	TIF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE	
İ		Transportation Institute Technology Transfer Center		
 *Left Turn Trap" or "Yellow Trap" Occurs when a Circular Yellow indication is displayed to a Permissive Left Turn Movement, while the Opposing Through Movement at the action of the opposing the o				
	 Issue of "Driver Expectancy" Isrue of "Driver Expectancy" Driver assumes Opposing Drivers see the same indication and will be stopping Driver makes Left Turn on Yellow and Strikes Opposing Traffic 			
	• [• Typ	Driver typically ticketed for "Failure ically occurs when a Lagging Left	to Yield" Turn is used in one direction	

STRIDE Southeastern Transportation Research, Innovation, Development and Education Cent

16

17

_

University of Florida Transportation Institute • Technology Transfer Center (T2)

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	Transportation Institute Technology Transfer Center	
Rings	and Barriers	
• F	Ring	
	 A ring is a term that is used t 	o describe a series of
	conflicting phases that occur	in an established order
	connicting phases that seed	
• F	Sarrier	
_	 A barrier (compatibility line) i 	s a reference point in the
	preferred sequence of a mul	ti-ring controller unit at
	which all rings are interlocke	d
	which all hings are interiooke	u.
STRI	DE Southeastern Transportation Research,	

38

Herbert Werthelm College of Engineering Personance of the second of the se

44

45

 We want to want

Safety Related Intervals Red Clearance = W + L 1.47 V where: "W' is the Width of the Intersection (stop bar to far <i>curb, in feet</i>) W = Width of the Intersection, in feet, measured from the near-side stop line to the far edge of the conflicting traffic lane along the actual vehicle path. L = Length of vehicle (Use 20 feet) V = Speed of approaching vehicles, in mph	WENDINGER TO TRANSFORM THE FUTURE
where: "W' is the Width of the Intersection (stop bar to far curb, in feet) W = Width of the Intersection, in feet, measured from the near-side stop line to the far edge of the conflicting traffic lane along the actual vehicle path. L = Length of vehicle (Use 20 feet) V = Speed of approaching vehicles, in mph	
"W" is the Width of the Intersection (stop bar to far curb, in feet) W = Width of the intersection, in feet, measured from the near-side stop line to the far edge of the conflicting traffic lane along the actual vehicle path. L = Length of vehicle (Use 20 feet) V = Speed of approaching vehicles, in mph	,
STRIDE Southeastern Transported Theorem Context	

University of Florida Transportation Institute • Technology Transfer Center (T2)

UF

Advantages of Actuated Control

- Usually reduce delay (if properly timed)
- Adaptable to short-term fluctuations in traffic flow

ge of Engine

- Usually increase capacity (by continually reapportioning green time)
 Provide continuous operation under low volume conditions as an added safety feature, when pre-timed signals may be put on flashing operation to prevent
- feature, when pre-timed signals may be put on flashing operation to prevent excessive delay • Especially effective at multiple phase intersections

STRIDE Southeastern Transportation Research, Innovation, Development and Education

14

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Maximum Green

UF

- •The Maximum Green time starts with the receipt of a call on a conflicting movement.
- Values based on traffic demands

erbert Wertheim College of Engineering

- Typical value: 30 to 50 seconds
- Can change Maximum Values (Max I, Max II, Max III) by schedule.

STRIDE Southeastern Transportation Research, Innovation, Development and Education Ce

22

UF

Dynamic Maximums

Allows the controller to automatically increase the Maximum value when multiple "Max Outs" occur.
Ideal for remote intersection that receives short peaks in traffic.

e of Engineering

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

STRIDE Southeastern Transportation Research, Innovation, Development and Education Co

23

Herbert Werthelm College of Engineering Terrent Version of the second

- Pedestrian Recall Acts as if there is a constant vehicle call
 Pedestrian Recall Acts as if there is a constant pedestrian call received at a crosswalk; the pedestrian intervals will be timed.
- "Soft Recall" Serves to return to a resting phase in the absence of other vehicular or pedestrian calls.

STRIDE Southeastern Transportation Research, Innovation, Development and Education Center

Detection Memory

UF

Herbert Wertheim College of Engineering

 Memory On / Locking Detection – the controller "remembers" a vehicular detection call until it can be served by the controller

 Memory Off / Non-Locking Detection – the controller drops a vehicular detection call once the detection zone is no longer occupied by a vehicle

STRIDE Southeastern Transportation Research, Innovation, Development and Education Cen

25

29

HE	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE		
	Transportation Institute Technology Transfer Center			
Preemption				
EVP Routines Terminate existing conflicting movement				
 Can shorten Walk but not Pedestrian Clearance 				
Advance to selected movements				
 Opposing through movements if protected/permitted left turns 				
 Adjacent through and left turn movements if protected left turns 				
 Hold until emergency vehicle passes 				
Advance to exit phases				
STRIDE Southeastern Transportation Research, Introductor, Development and Education Center				

UF	Herbert Wertheim College of Engineering Tanapartation Institute Technology Taxatle Center	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Priorit	у	
•G • E a	reen Extension Strategies Extends the green time for the movement when approaching	a transit / freight vehicle is
• A • F • C	Applies only when the signal is already green fo Requires the detection of the approaching transi Generally will not affect coordination	r the movement t / freight vehicle
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE	
	Transportation Institute Technology Transfer Center		
Sec	quences		
Barrier			
Phase	e sequences can be reversed between barriers	to provide leading or lagging turn phases.	
STRIDE Southerstern Transportation Research. Inclusion, Development and Education Center			
46			

	NG T	-	W ENG	INEE	R TO	ran	SFORM TH	e FUT
90	00						TS	,
er 4. ite 5. 6.	M. 5. De 5. Co	ain cheo eteo omm	Mer dule stor	iu in 7 is 8	.St	atı 9 ir	as Wutil	5
C En	Trotte	oware			co	ANNA A	NDER	
Phases 1	1	2 1		5	4	7		
Hin Cro S			5			5	5	
Gap.Ext 1.0		. 1	. 1.0		1.0	1.0	1.0	
Heet 25							25	
		• •			50	50	50	
Mer 2 50	15 2	5 3	5 3.5	3.5	3.5	3.5	3.5	
Max 2 50 Yel Cir 3.5						TC Cor	stroffer	
	į.	3.5 3	2 35 35 3	2 56 66 56 56	2 96 96 20 20 20 2 35 35 35 35 35 35	2 06 06 00 00 00 00 00 00 00 00 00 00 00	2 86 86 80 80 80 80 80 80 9 35 3.5 3.5 3.5 3.5 3.5 3.5 ATC Co	2 66 66 66 66 77 77 77 78 78 78 78 78 78 78 78 78 78

Herbert Wertheim College of Engineering Transportation Institute Technology Transfer Center	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Vehicle Detector Settings	
Detector Switching	
 Modifies the destination of a detector call controller 	based on the current status of the
Example Application:	
 On an approach with a protected / permitted left would call and extend the left turn phase, but will would extend the adjacent through movement 	turn display, the detector in the left turn lane hen the left turn phase terminates, the detector
STRIDE Southeastern Transportation Research, Innovation, Development and Education Center	

11

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Coord • C	Ination Settings ycle Length The total time to complete one full sequinitesection Cycle Length is defined by pattern Dit	ience of phases at an
	The Split is the time allocation among f Split data is entered per phase, by patt Can be defined in seconds or percenta	he phases within the cycle ern ge of the cycle
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	Transportation Institute Technology Transfer Center	
Preem	ption	
• N	TCIP Standards:	
	When a preempt request is received, the active phase to service the preempt.	ne controller terminates the
•	If coordination is in operation, the pree coordination.	mption call will override
	The controller then moves to the preer to service the programmed dwell phase released.	nption sequence programmed e(s) until the preempt input is
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	

UF	Herbert We	rtheim Coll Technology Transfer C	ege of Engineering		POWERING THE NEW ENGIN	EER TO TRANSFORM THE FUTURE				
Preem	Preemption / Priority Inputs to Controller									
		Preempt #	Preempt Input		Type (typical)					
		1	1 (steady low)		Rail					
		2	2 (steady low)		Rail					
		3	3 (steady low)	Rail or H	ligh Priority Emergency					
		4	4 (steady low)	Rail or H	ligh Priority Emergency					
		5	5 (steady low)	Rail or H	ligh Priority Emergency					
		6	6 (steady low)	Rail or H	ligh Priority Emergency					
		7	3 (oscillating)	Low Priori	ty Emergency or Transit					
		8	4 (oscillating)	Low Priori	ty Emergency or Transit					
		9	5 (oscillating)	Low Priori	ty Emergency or Transit					
		10	6 (oscillating)	Low Priori	ty Emergency or Transit					
	The controll an oscillatin	er recogniz g 6.25 Hz i	es high-priority as nput on these input	s a steady g uts.	ground true input and lo	w-priority as				
STRI	DE Souther	estern Transportati ion, Development	on Research, and Education Center							

20

25

26

- Crossing Street Vehicle Signals Begin Track Clearance Green Interval
- Crossing Gates Begin to Lower

31

32

34

35

38

Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Transit Priority – Controller Settings	
Time of Service Desired (TSD)	
• Time of Expected Departure (TED)	
 Maximum Reduction Time 	
 Maximum Extension Time 	
 Priority Strategy Table 	
 Priority Request Re-service Time 	
STRIDE Southeastern Transportation Research, Innovation, Development and Education Center	

50

56

 Method Worthelm College of Engineering
 Exercise Task Status

 - Communications Status

 - Bash Status

 - Ober Failures

 - Obercino System Status

 - Split Montor

 - Split Montor

 - Systemated Queue Length

 - Oversaturation Severity Index

 - Pedestrian Dise Actuation and Service

 - Detection System Status

 - Split Montor

 - Oversaturation Severity Index

 - Pedestrian Dise Actuation and Service

 - Protect Details

<page-header><page-header><page-header><text><section-header><figure><figure><figure>

17

_

_

_

23

STRIDE Southeastern Transportation Research, Innovation, Development and Education Co

2

Herbert Wertheim College of Engineering POWLEING T Terretrieur Te

- A traffic signal that is properly designed and timed can:
 - Provide for the orderly and efficient movement of people
 - Effectively maximize the volume movements served at the intersection
 - Reduce the frequency and severity of certain types of crashes
 Provide appropriate levels of accessibility for pedestrians and side street traffic

MUTCD, 2009 Edition

STRIDE Southeastern Transportation Research, Innovation, Development and Education Center

Do Signals Improve Safety?

- •Traffic control signals can have the following disadvantages:
 - Excessive delay

Herbert Wertheim College of Engineering

- Excessive disobedience
- Increased use of less adequate routes
- Significant increases in the frequency of collisions
 (especially rear-end collisions)
 MUTCD, 2009 Edition

STRIDE Southeastern Transportation Research, Innovation, Development and Education O

Herbert Wertheim College of Engineering Transportation Institute Technology Transfer Center	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTU
Do Signals Improve Safety?	
Crash Types: Right Angle Crashes Pedestrian Crashes	
Correctable	Right-Angle crash type.
STRIDE Southeastern Transportation Research,	NCHEP Report 491: Crash Experience Warrant for Traffic Signals

8

		Transportation Institute Technology Transfer Center			
Si	gnal l	Installation Justification (W	arrai	nts)	
Warrant	Name	Description	Warrant	Name	Description
Warrant 1	Eight-Hour Vehicular Volume	This warrant is used when a large volume of intersecting traffic or where the traffic volume on the major street is so encessive that traffic on the minor street suffers undo delay. This warrant requires at least eight hours' worth of traffic volume data.	Warrant S	School Crossing	The School Crossing signal warrant is intended for application where the fact that school children cross the major street is the principal reason to consider installing a traffic control signal. For the purposes of this warrant, the word "school children" includes elementary through high school students.
Warrant 2	Four-Hour Vehicular Volume	The Four-Hour Vehicular Volume signal warrant conditions are intended to be applied where the volume of intersecting traffic is the principal reason to consider installing a traffic control signal. This warrant requires at least four hours' worth of traffic volume data.	Warrant 6	Coordinated Signal System	Progressive movement in a Coordinated Signal System sometimes necessitates installing traffic control signals at intersections where they would not otherwise be needed in order to maintain proper platooning of vehicles.
Warrant 3	Peak Hour	The Peak Hour signal warrant is intended for use at a location where traffic conditions are such that for a minimum of 1 hour of an	Warrant 7 Warrant 8	Crash Experience	The Crash Experience signal warrant conditions are intended for application where the severity and frequency of crashes are the principal reasons to consider installing a traffic control signal.
		average day, the minor-street traffic suffers undue delay when entering or crossing the major street. This warrant requires just one hour of data and is often used for land use or impact studies; bounderst properties and environmental fits it the only warrant		Roadway Network	Installing a traffic control signal at some intersections might be justified to encourage concentration and organization of traffic flow on a Roadway Network.
		that is used to justify the signal.	Warrant 9	Intersection Near a	The Intersection Near a Grade Crossing signal warrant is intended for use at a location where none of the conditions described in the other eight toefficient unserest are must but the receivable to the
Warrant 4	Pedestrian Volume	The Pedestrian Volume signal warrant is intended for application where the traffic volume on a major street is so heavy that pedestrians experience excessive delay in crossing the major street.		Crossing	eight oam, signa warrans are nice, oo ure polining to the intersection of a grade crossing on an intersection approach controller by a STOP or YIELD sign is the principal reason to consider installing a traffic centrol signal.

_

10

11

14

1	Е
1	Э

	Transportation Institute Technology Transfer Center	
Vehicu	ular Signal Displays	
NUTCD	Requirements	
• /	A minimum of two primary signal faces for	the through movement (one per lane recommended)
• •	Separation between faces – minimum of 8	feet
	Left turn and right turn signals may be add	ed
	Mounting Height	
· · · ·	 15 – 19 over roadway 2 10 over eidewalk 	
• F	Between 40 and 180 feet from stop bar	
• 1	Located within 40 degree "Cone of Vision"	of center of approach
1.1	Must be visible for a minimum defined dist	ance
STRI	DF Southeastern Transportation Research,	

23

<page-header>

35

41

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	Transportation Institute Technology Transfer Center	
Detec	tion	
• L	arge Area Detection	
	 Long detection area (40 – 80 fe 	et)
	Applications	
	 Slow speed approaches (under 3 	5 mph)
	 Left turn lanes 	
	 Right turn lanes with delay to screet 	een right turn on red vehicles
	 Minimum green based on driver 	r expectancy
	 Extension set low, as vehicle in 	detection zone extends the
	call	
стрі	Call	

50

Smoothed (5 m 1220 (1210) (el lime	SR 60 & 50th St (u39 sm 60 - 67 - 521 00 60 u 63 -	3) to \$R 60 & US 30 1-2021 21 39	00th	nd		
--	---------	---	--------------------------------------	------	----	--	--

8

UF	Herbert Wertheim College of Engineering Ромскию тик исм вионеск то такаколом тик гитике. Такумания налике Такик Санк
Trave	el Time Data – HERE
STRI	DE Southeastern francostation Research, Southeastern de Education Center
10	

<page-header>
<page-header>

11

Transportation Inc	taute Technology Transfer Center		STREEP TO TRANSFORM THE
	o Doliobility		
aver min	le Reliability		
Travel Time	Sample Corridor Report Showing Travel T	ime Index Values For PM Peak	Hours
Time	· Minimum	Average	Maximum
MON 15-02	1.32	1.41	13
MON 17.00	1.14	1.6	1.55
MON 18-02	1.14	1.24	1.32
MON 19-02	1.04	1.0	1.32
TUE 16:00	5.34	1.43	1.55
Tull 17:00	1.11	1.58	2.07
TUE 10:00	1.22	1.0	1.00
Tut 19-00	1.31	128	1,44
WED 16:00	1.36	1.43	1.5
WED 17:00	1.45	1.49	1.53
WED 18-00	1,31	1.32	1.32
WED 18-90	1.14	1.00	1.54
			Source: Iteris ClearGuide

Training Slides

Highway Capacity Analysis with Signalized Intersections

Herbert Wertheim College of Engineering	POWEBING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Transportation Institute Technology Transfer Certer	
Agenda	
Agenau	
 Overview of the Highway Capacity Manual 	
 Signalized Intersections 	
Vehicular LOS	
 Signal Timing Optimization 	
Multimodal LOS	
Urban Streets	
 Interchanges and Alternative Intersections 	
• Q&A	
STRIDE Southeastern Transportation Research, Innovation, Development and Education Center	z

2			
2			
/			
	,		

Herbert Wertheim College of Engineering POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE UF HCM / HCS History HCM Releases: 1950 1965 1985 1994 0 Θ 3rd Editio Transportation Research Board Cor letely anized Much I of P 2nd Edi Major updates to the 3rd Edition Highway Capa Committee Chapters, firs fully digital 1987 1994 1997 2000 2010 2016 2022 HCS Releases: -• Ó -• -• • . HCS-3 HCS 2010 HCS 2022 / HCS 2023 Rel ise 2 HCS 2000 HCS 7 STRIDE |

9

System Element HCM Chapter Service Measure(s) by Mode Automobile Service Measure(s) by Mode Pedestring Bicycle Sastin Element HCM Chapter Automobile Pedestring Bicycle Basic floesay segment 12 Density - - Multitare highway 12 Density - - Multitare highway 12 Density - - Freeway segment 13 Density - - Tro-loss flymay 15 Follower Density - - Tro-loss flymay 15 Follower Density - LOS Score Ubtan steet facility 16 Speed LOS Score LOS Score Tro-way stop 20 Delay Constaing - Tro-way stop 21 Delay - - Al-way stop 21 Delay - - Ramp terminal, alternative interestion 2 Element of theme on on on on on on on on on on on on on	м тне рото	ER TO TRANSFOR	POWERING THE NEW ENGINE	ering	ollege of Engine	Herbert Wertheim Co	
HCM Service Measure(Lbr Mode) Name Enclaration Preessay Statily 10 Density - Basic Reveary Statily 10 Density - - Basic Reveary Statily 10 Density - - - Multiure Ingitway 12 Density - - - - Multiure Ingitway 12 Density -					der Certer	Transportation Institute Technology Transfe	
Hoat Chapter Service Vessurch by Mode Chapter Service Vessurch by Mode Polestrian Bigget Bigget Freeway resent 10 Density - - Basic freeway segment 12 Density - - Mattine highway 12 Density - - Freeway mean fold diverge segment 13 Density - - Freeway mean fold diverge segment 14 Density - - Throckare fighway 15 Follower Density - - Uban steet fically 16 Speed LOS Score LOS Score LOS Score Uban steet fically 16 Speed LOS Score LOS Score LOS Score Signalized interestion 19 Delay Grossing - - Alway stop 20 Delay - - - Ram jernical, alterative interestion 20 Delay - - Off terest pedestant brough david 2 Delay - - Ron					ures	HCM Service Measu	
Prismi Lemmin Data Pudentian Bigs Freessy segment 12 Density - - Basic freessy segment 12 Density - - Matlaine inginway 12 Density - - - Matlaine inginway 12 Density - - - - Matlaine inginway 13 Density - - - - Freessy segment 13 Density - <			Service Measure(s) by Mode		нсм		
Freewy facility 10 Density - - Basic freewy segment 12 Density - LOS Score Multiane highway 12 Density - LOS Score Freeway weating agrinerits 13 Density - - Trockure highway 14 Density - LOS Score Utana steet facility 16 Speed LOS Score LOS Score Utana steet facility 18 Speed LOS Score LOS Score LOS Score Signature diversection 19 Delay LOS Score LOS Score LOS Score Lightand tendersection 19 Delay Crossing - - Al-way stop 21 Delay - - - - Rom tennset, shringther 12 Delay - - - - Rom tennset, shringther 12 Delay - - - - Rom tennset, shringther 2 Delay -	Transit	Bicycle	Pedestrian	Automobile	Chapter	System Element	:
Basis freeway segment 12 Density - - Mutilize highway 12 Density - LOS Score Freeway weaving segment 13 Density - - Troware highway 15 Follower Density - - - Troware for highway 15 Follower Density -	-	-	-	Density	10	Freeway facility	
Multiline highway 12 Density - LOS Score Freesay waves segments 13 Density - - Freesay waves mores and diverge segments 14 Density - - Torobain hybriny 15 Follower Density - LOS Score LOS Score Uthan street facility 16 Speed LOS Score LOS Score LOS Score Eigenstled Interescion 19 Belay LOS Score LOS Score LOS Score Eigenstled Interescion 19 Delay LOS Score LOS LOS LOS LOS LOS LOS LOS LOS LOS LOS		-	-	Density	12	Basic freeway segment	Ba
Freeway waving segment 13 Density - Freeway waving segments 14 Density - Col Trouten trighway 15 Follower Density - COS Score Utchan steet hanity 16 Speed LOS Score LOS Score Utchan steet hanity 18 Speed LOS Score LOS Score Signalized Intersection 19 Delay COS Score LOS Score Signalized Intersection 20 Delay Coreving Statistacion	-	LOS Score	-	Density	12	Multilane highway	1
Freeswamsge and diverge segments. 14 Density - - Tor-kane knytway 15 Follower Donaky - LOS Score LOS Score LOS Score Urban street facility 16 Speed LOS Score LOS Score LOS Score Urban street facility 18 Speed LOS Score LOS Score LOS Score Signalided infrancetion 19 Delay LOS Score L	-	-	-	Density	13	Freeway weaving segment	Free
Tho-bane hghway 15 Follower Densky - LOS Score Uthan steet facility 16 Speed LOS Score LOS Score Uthan steet facility 18 Speed LOS Score LOS Score Signalized intersection 19 Delay LOS Score LOS Score Two-way stop 20 Delay Statistacion - Al-way stop 21 Delay - - Roundabout 22 Delay - - Ramp terminal, alternative intersection 23 Experimental strate time - Off-streer jedestrank-shorigh califi 2 - -	-	-	-	Density	14	Freeway merge and diverge segments	Freeway m
Ubtan steef facility 16 Speed LOS Score LOS Score Ubtan steef facility 18 Speed LOS Score LOS Score Signalized intersection 19 Delay LOS Score LOS Score Two way stop 20 Delay Crossing Score - All way stop 21 Delay - - Ramp terminal, alternative intersection 23 Experimend travel time - Off-steer jedebatic holycing Los ID 24 - LOS Score		LOS Score	-	Follower Density	15	Two-lane highway	
Uthan steed segment 18 Speed LOS Score LOS Score Signalized intersection 19 Delay LOS Score LOS Score Two-way stop 20 Delay Crossing Statistantion - Always stop 21 Delay - - Roundabout 22 Delay - - Ramp terminal, alternative intersection 23 Experienced traveit time - Off-steer pedestrank-shock shock LOS Score LOS Score	LOS Score	LOS Score	LOS Score	Speed	16	Urban street facility	L
Signalized Interaction 10 Delay LCS Score LCS Score Two-way stop 20 Delay Statistication All-way stop 21 Delay Roundabout 22 Delay Ramp terminal, alternative intersection 23 Experimend tarvel time Off-steer predistanci skright facility 24 Space, event LCS Score	LOS Score	LOS Score	LOS Score	Speed	18	Urban street segment	Ur
Two-way stop 20 Delay Crossing Safafaction A8-way stop 21 Delay Roundabout 22 Delay Ramp terminal, alternative intersection 23 Expandenced traveline Off-streer pedestrank-sing-of-scaling 24 Space, events LOS Score	-	LOS Score	LOS Score	Delay	19	Signalized intersection	Sig
All-way stop 21 Delay Roundabout 22 Delay Ramp terminal, alternative intersection 23 Experienced travel time (01 street predistrian skright Gall) 24 Space, events LOS Score	-	-	Crossing Satisfaction	Delay	20	Two-way stop	
Roundatiout 22 Delay Ramp terminal, alternative intersection 23 Experienced travel time	-	-	-	Delay	21	All-way stop	
Ramp terminal, alternative intersection 23 Experienced travel time Off-street pedestrian-bicycle facility 24 Space, events LOS Score	-	-	-	Delay	22	Roundabout	
Off-street pedestrian-bicycle facility 24 Space, events LOS Score	-	-	e	Experienced travel tim	23	Ramp terminal, alternative intersection	Ramp term
		LOS Score	Space, events		24	Off-street pedestrian-bicycle facility	Off-stree
					estation Research		CTDI

 UF	Herbert Wertheim College of Engineering Powsains THE NEW ENGINEER TO TRANSFORM THE FUTU	RE
Quiz		
How many	Level of Service (LOS) ranges are used in the Highway Capacity Manual?	
a) 3		
c) 5		
d) 6		
e) 7		
Answer	r: D The LOS concept facilitates the presentation of results, through the use of six ranges (A to F scale)	
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	13

	Transportation Institute Technology Transfer Center	
About	HCM Methods	
Detern	inistic	
 Alwa 	s produces the same results for a given set of inputs	
 Exce 	ption: Travel Time Reliability (can incorporate randomness	•)
 Macro 	scopic	
 Cons 	iders average conditions experienced by vehicles over a p	eriod of time (typically 15 minutes or 1 hour)
In cont	ast, microsimulation models are:	
 Stoc 	hastic: random seeds produce different results	
 Micr 	oscopic: tracks individual vehicles	
SIRI	DE Innovation Development and Education Center	14

Peak Hour Factor - Example			
A measure of traffic demand fluctuation within the analys	is hour		
I/			
$PHF = \frac{V}{A + V}$	Time Period	Volume (veh)	Rate of Flow (veh/h)
$4 \times V_{15}$	5:00-5:15	1,000	4,000
	5:15-5:30	1,200	4,800
V = hourly volume (vph), and	5:30-5:45	1,100	4,400
V ₁₅ = volume during the peak 15 minutes	5:45-6:00	1,000	4,000
	5:00-6:00	4,300	4,300
Traffic movements were counted for the 5-6 PM pea	k hour. What is the co	prresponding Peak Ho	ur Factor?

Time Period Volume (veh) Rate of Flow (veh)th) PHF = peak hour factor, V 5:00-5:15 1:000 4:000 PHF = peak hour factor, Sign = 2:00 4:800 V = bourly volume (vph), and 5:30-5:45 1:000 4:000 V = volume during the peak 15 minutes 5:30-6:40 4:300 5:30-6:40 4:300 Traffic movements were counted for the 5-6 PM peak hour. What is the corresponding Peak Hour Factor? PHF = 4;300/(4 x1,200) = 4;300/4;800 = 0.90	Peak H	Transportation Institute Technology Transfer Center			
$PHF = \frac{V}{4 \times V_{15}}$ $PHF = peak hour factor, \\ V = boulty volume (vph), and \\ V_{15} = volume during the peak 15 minutes$ $Traffic movements were counted for the 5-6 PM peak hour. What is the corresponding Peak Hour Factor? PHF = 4,300/(4 x1,200) = 4,300/4,800 = 0.90$	A measure o	of traffic demand fluctuation within the ana	lysis hour		
$\begin{array}{rcl} FHF & -\frac{1}{4 \times V_{15}} & & & & & & & & & & & & & & & & & & $	DI	V V	Time Period	Volume (veh)	Rate of Flow (veh/h)
PHF = peak hour factor, 1,200 4,800 V = hourly volume (vph), and 5,30,5,45 1,100 4,400 V1s = volume during the peak 15 minutes 5,45,6,00 1,000 4,000 Traffic movements were counted for the 5-6 PM peak hour. What is the corresponding Peak Hour Factor? PHF = 4,300/(4 x1,200) = 4,300/4,800 = 0.90	PT	$T = \frac{1}{4 \times V_{15}}$	5:00-5:15	1,000	4,000
$\begin{array}{rcl} PHF & = \text{ peak hour factor,} \\ V & = \text{ hourly volume (vph), and} \\ V_{15} & = \text{ volume during the peak 15 minutes} \end{array} \qquad \begin{array}{c} 530{\cdot}545 & 1.100 & 4.400 \\ 545{\cdot}600 & 1.000 & 4.000 \\ \hline 5{\cdot}00{\cdot}6{\cdot}00 & 4.300 & 4.300 \\ \hline \end{array}$ Traffic movements were counted for the 5-6 PM peak hour. What is the corresponding Peak Hour Factor? $\begin{array}{c} PHF = 4,300/(4 \times 1,200) = 4,300/4,800 = 0.90 \end{array}$			5:15-5:30	1,200	4,800
V15 = volume during the peak 15 minutes 545-6:00 1,000 4,000 5:00-6:00 4,300 4,300 Traffic movements were counted for the 5-6 PM peak hour. What is the corresponding Peak Hour Factor? PHF = 4,300/(4 x1,200) = 4,300/4,800 = 0.90	PHF	= peak hour factor, = hourly volume (vph) and	5:30-5:45	1,100	4,400
5:80-6:80 4.300 4.300 Traffic movements were counted for the 5-6 PM peak hour. What is the corresponding Peak Hour Factor? PHF = 4,300/(4 x1,200) = 4,300/4,800 = 0.90	V ₁₅	= volume during the peak 15 minutes	5:45-6:00	1,000	4,000
Traffic movements were counted for the 5-6 PM peak hour. What is the corresponding Peak Hour Factor? PHF = 4,300/(4 x1,200) = 4,300/4,800 = 0.90			5:00-6:00	4,300	4,300
	Traffic r	novements were counted for the 5-6 PM p PHF = 4,300/(4 x1,	5:00-6:00 eak hour. What is the c 200) = 4,300/4,800	4,300 orresponding Peak Ho = 0.90	4,300

Signalized Intersections – Tem	poral Scope		
Approach A	Planning leve Undersaturated co	I analysis onditions only	Operational analysis Undersaturated and oversaturated conditions
PHF calculated through equation			
	Approach A	Approach B	Approach C
Approach B	Study Period = 1.0 h	Study Period = 1.0 h	Study Period = 1.0 h
 Demand = Sum of volumes across the hour PHF = 1.0 	Single analysis period T = 0.25 h	Single analysis period T = 1.0 h	Multiple analysis periods T = 0.25 h
Approach C	Cow R		
Demand = Volumes for every analysis periodPHF = 1.0			

Reflects the duality of signal progression for the corresponding movement group Trype Typical Signal Spacing Conditions Under Which Arrival Type 1 6 1000 Coordinated operation on a two-way street where the subject direction recoives good progression. 2 > 1,000 - 3,200 Acts extreme version of Arrival Type 1 3 > 3,200 Boolanded Signals Coordinated signals or viceley spaced coordinated signals or viceley spaced coordinated signals or viceley spaced coordinated signals or viceley spaced coordinated signals or subject direction receives good progression. 6 1,000 Coordinated operation on a two-way street where the subject direction receives good progression. 6 6,000 Coordinated operation on a two-way street horeses door troeses good progression.	Arriv	Transportation busilists Technology To val Types and I	Platoon Ratio	
Arrival Typical Signal Spacing Conditions Under Which Arrival Type Likely to Occur and Conditions Under Which Arrival Type Likely to Occur and Conditions of the way steel where the subject direction denotes good progression. Arrival and the subject direction of an and the subject direction of a law way steel where the subject direction on a l	Reflects	s the quality of signal prog	ression for the corresponding moveme	ent group
Coordinated operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction contained operation on a how say street where the subject direction on a convery street in dense and street the subject direction on a street way street in dense and street the subject direction on a street way street in dense the subject direction on a convery direction on a convery street in dense the subject direction on a converse direction on a converse direction on a converse direction on a converse direction on a converse direction on a converse direction on a converse direction on a converse direction on a converse direction on a con	Arrival Type	Typical Signal Spacing	Conditions Under Which Arrival Type Is Likely to Occur	Traffic and Geometry EBL EBT EBR WEL WAT WAR HAL WAT HAR SAL SAT SA
2 > 1.600 - 3.200 A less externe version of Anival Type 1 3 > 3.000 Isolated signals or widely spaced coordinated spatials or widely spaced coordinated spatials or widely spaced coordinated operation on a low-way street where the subject direction neaves good progression 4 > 1.600 - 3.200 Condinated operation on a low-way street where the subject direction neaves good progression 5 \$ 1.000 Condinated operation on a low-way street where the subject direction neaves good progression 6 \$ 800 Condinated operation on a on-way street the end of the subject direction neaves good progression	1	≤ 1,800	Coordinated operation on a two-way street when the subject direction does not receive good progression	Demod with Dia Dia <thdia< th=""> Dia <thdia< th=""> <thdia< td=""></thdia<></thdia<></thdia<>
3 > 3.200 backated operation on a low-way street where the subject direction nearway street in dense networks and constitution street subjects. 3 3 3 3 3 4	2	> 1,600 - 3,200	A less extreme version of Arrival Type 1	Gase. 0
4 > 1.000 - 3.200 Coordinated operation on a howays shret where the subject direction receives good progression Image: Coordinated operation on a howays shret where the subject direction receives good progression Image: Coordinated operation on a howays shret where the subject direction receives good progression 5 Coordinated operation on a howays shret where the subject direction receives good progression Image: Coordinated operation on a howays shret where the subject direction receives good progression 8 6.800 Coordinated operation on a new ways shret where reduction and new ways shret where the subject direction receives good progression	3	> 3,200	Isolated signals or widely spaced coordinated signals	Pediations per h 3 0
5 \$1.000 Coordinated operation on a tako-way street where the sub- time subject direction noise spool progression the street of the subject street of the subject street of the subject street of the subject street of the street of the street of the subject street of the street of the street of the subject street of the stre	4	> 1,600 - 3,200	Coordinated operation on a two-way street where the subject direction receives good progression	Head Queue, wh 0
8 Coordinated operation on a one-way street in dense ≤ 800 networks and central business districts	5	s 1,600	Coordinated operation on a two-way street where the subject direction receives good progression	ROD, with 0
	6	≤ 800	Coordinated operation on a one-way street in der networks and central business districts	168

28

_

_

34

Herbert Wertheim College of Engineering	POWI	RING TH	-	EW E	NGIN	IEER	тот	RAT	ISFO	RM	THE	FUTU	RE
Transportation Institute Technology Transfer Center													
Saturation Flow Rate – Adjustment	Factor	5											
	Traffic and Geometry												
Heavy Vehicles and Grade:		EBL	EBT	EBR	W8L	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	Demand, veh/h	200	1000	10	200	1000	10	100	500	50	100	500	50
Negative:	Lane Width, ft	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
riggario.	Storage Length, ft	200	0	200	200	0	200	200	0	1000	200	0	1000
$100 - 0.79P_{HV} - 2.07P_{a}$	Saturation, pc/h/h	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
$f_{HVa} = \frac{g}{100}$	Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
,	Grade, %		0			0		_	0		_	0	_
	Buses, per h			0			0			0			0
- New Merselfuer	Parking, per h	0	N *	0	0	N ·	0	0	N *	0	0	N *	0
 Non-Negative. 	Bicycles, per h		0			<u>•</u>			0			0	
	Pedestrians, per h		0			0		-	0			0	
100 0.798 0.218.2	Arrival Type	3	4	3	5	4	3	3	3	3	3	3	3
$f_{HVg} = \frac{100 - 0.78P_{HV} - 0.31P_g^2}{100}$	Upstream Filtering (I)		EB	1.00	- P	NB	0.78		NB	1.00		58	1.00
	Initial Queue, veh	0	0	<u>e</u>	0	0	0	0	0	0	0	0	
	Speed Limit, mi/h		35			35			35			35	
	Detector, ft	40	40	40	40	40	40	40	40	40	40	40	40
P _{HV} = percent heavy vehicles in the corresponding movement group (%)	RTOR, veh/h			<u> </u>			0			0	<u>ا</u>		0
eg = approach grade for the corresponding movement group (%)	unsignalized Movem				-			0.0		0.0	0.0		
	onsignalized Delay	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Southeastern Transportation Research, Innovation, Development and Education Center													35

35

Herbert Wertheim College of Engineering POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE UF Saturation Flow Rate – Adjustment Factors Traffic and Gr - S8T S8 - S8T Pedestrians and bicycles: • f_{Lpb} = pedestrian adjustment factor for left-turn groups • f_{Rpb} = pedestrian-bicycle adjustment factor for right-turn groups 200 12.0 200 1900 0 ane Width, ft Storage Length, # Seturation, pc/h/ln Heavy Vehicles, % Grade, % Guses, per h 0.0 0.0 STRIDE

38

Herbert Wertheim College of Engineering	POWERING TH	NEW ENGINEER TO TRANS	FORM THE FUTURE
Transportation institute Technology Transfer Center			
Poturation Flow Pote Adjustment F	- anterro		
Saturation Flow Rate – Aujustinent r	actors		
Mark 70.000			
Vork Zones:	Intersection	FRI FRT FRR WRI WRT WRR NRI	NRT NRR SRI SRT SRF
Closures within 250 ft of stop bar	Lates	1 2 1 1 2 1 1	2 0 1 2 0
and the second sec	Shared Lane		80.8
Number of open lanes	Percent Turns in Shared Lane	0 0 0 0	0 0 0
Total width of open lanes (ft)	Percent Unopposed Left Turns	0 0 0	0
	Heaviest Lane Volume, veh/h	0 500 0 10 500 0 0	0 0 0 0
	Stat-Up Lost Time, s	20 20 20 20 20 20 20 20	20 20 20 20 20
	Extension of Effective Green, 6 Walk Internal a	20 20 20 20 20 20 20	20 20 20 20 20
	Redention Clear Interval a	00	00 00
	Receiving Laters	2 2	2 2
	Tum Radua, ft	112 32 112 32 112	32 112 22
	Work Zone Active		
	Left/Thru Lanes Open	1 3	3 3
vs = adjustment factor for work zone presence at the intersection	Approach Width, ft	12.0 36.0	36.0 36.0
	Bus Blockage Time, s	14.4 14.4	14.4 14.4
	Parking Maneuver Time.s	<u>11 11 11 11 11 11 11 11 11 11 11 11 11 </u>	13 13 18
	Opposing Hight-Turn Lane Influence	0.16 0.66 0.49 0.06 0.46 0.00	0 10 10 10 10 10 10 10 10 10
	res rigolar hinnig at see	100 100 100 100 100 100	lete lete lete lete
	(unde	r DETAILED INPUT DATA)	

39

_

Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANS	FORM	HEFU	TUR
Transportation Institute Technology Transfer Center				
Control Delay				
	Movement Group Results		FB	
	Approach Movement	L	T	R
 Uniform delay (d1) 	Assigned Movement	5	2	1
 Assumes uniform arrivals and departures 	Adjusted Flow Rate (v), veh/h	304	822	81
Accounts for the quality of programming	Adjusted Saturation Flow Rate (s), veh/h/ln	1767	1969	193
 Accounts for the quality of progression 	Queue Service Time (g =), s	16.2	49.6	50
	Cycle Queue Clearance Time (g c), s	16.2	49.6	50
Incremental delay (d2)	Green Ratio (g/C)	0.39	0.42	0.4
. Effects of eaching (and	Capacity (c), veh/h	330	834	81
 Effects of random, cycle-by-cycle nucluations in demand 	Volume-to-Capacity Ratio (X)	0.922	0.986	0.9
that occasionally exceed capacity	Back of Queue (Q), ft/In (95 th percentile)	351.3	938.2	948
	Back of Queue (Q), veh/In (95 th percentile)	13.7	36.6	37.
Initial queue delay (d3)	Queue Storage Ratio (RQ) (95 th percentile)	0.08	0.23	0.2
	Uniform Delay (d +), s/veh	33.9	34.3	34.
 Initial queue due to unmet demand (previous analysis 	Incremental Delay (d 2), s/veh	25.7	28.1	30.
period)	Initial Queue Delay (d ɔ), s/veh	0.0	0.0	0.0
 Only applicable to oversaturated conditions 	Control Delay (d), s/veh	59.5	62.3	65.
Can be manually provided if needed	Level of Service (LOS)	E	E	E
	Approach Delay, s/veh / LOS	63.		E

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Quiz		
This perfor a) Control b) Uniform c) Increm d) Initial (e) Back of	mance measure is used exclusively for analyses of m delay (d1) n delay (d2) ueue delay (d3) queue length (Q)	ulti-period with oversaturated conditions:
Ans	wer: D	
STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center	40

U	Herbert Wertheim College of Transportation Institute Technology Towarfe Center	f Engineering	FRING THE NEW ENGINEER TO TRANSFORM THE	FUTU
Lev	el of Service			
	LOS by Volume-to-Capacity Ratio*			
	Control Delay (s/ven)	≤ 1.0	> 1.0	
	≤ 10	A	F	
	> 10-20	В	F	
	>20-35	С	F	
	>35-55	D	F	
	>55-80	E	F	
	>80	F	F	
	*For approach-based and intersectio	n-wide assessments, LOS is defi	ined solely by control delay	
ST	RIDE Southeastern Transportation Resei	irch, iation Center		

Overview Definition: a set of tools and techniques designed to develop optimal signal phasing and timing plans for signalized intersections, arterial streets, or signal networks. Multi-objective problem, no perfect solution Improvement of one variable to the detriment of other Computationally intense, done by software	UF	Herbert Wertheim College of Engineering Transportation Institute Technology Transfer Gener	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Definition: a set of tools and techniques designed to develop optimal signal phasing and timing plans for signalized intersections, arterial streets, or signal networks. Multi-objective problem, no perfect solution Improvement of one variable to the detriment of other Computationally intense, done by software	Overv	iew	
Multi-objective problem, no perfect solution Improvement of one variable to the detriment of other Computationally intense, done by software	Definition intersec	on: a set of tools and techniques designed to develop optim tions, arterial streets, or signal networks.	al signal phasing and timing plans for signalized
Computationally intense, done by software	Multi-ob Improv	jective problem, no perfect solution vement of one variable to the detriment of other	
	Comput	ationally intense, done by software	

STRIDE Southeastern Transportation Research, Innovation, Development and Education Center

56

57

UF Herbert Wertheim College of Engineering Highway Capacity Software Demo

<page-header><section-header><section-header><section-header><section-header><section-header><section-header><image><text><text><text>

-				
-				
-				
-				
-				
_				

UF	Herbert Wertheim College of Engineering Ромзкино тик нем висилезо то техногом тик гитике Таминики нами силику Тамий смя						
Bicycle Methodology Overview							
	Step 1: Determine Bicycle Delay Step 2: Determine Bicycle LOS Score for Intersection						
	Step 3: Determine LOS						
STRIDE Southeastern Transportation Research, Internation, Development and Education Center 71							
71							

Herbert Worthelm College of Engineering Fowtaking The New ANSING THE NEW ANSING THE NEW ANSING THE FUTURE THE NEW AND THE FUTURE									
Bicycle Level of Service									
Based on Bicycle LOS Score:									
	LOS	Bicycle LOS Score							
	A	≤ 1.50							
	В	> 1.50-2.50							
	С	> 2.50-3.50							
	D	> 3.50-4.50							
	E	> 4.50-5.50							
	F	> 5.50							
STRIDE Southeastern Tra	insportation Research, Iopment and Education Center	STRIDE Southeastern Transportation Research, Invocation, Development and Education Center 74							

Base Free	Base Free-Flow Speed						
Determined as fu	nction o	of segment g	tric inputs:				
			Width of the upstream boundary intersection (computed as part of segment length				
Segnent							
riame			Length of street with a restrictive median (raised curb)				
Linsteam With R	EB WB		Dependion of comment with such on the sight side				
Restrictive Median. ft	0	50	Proportion or segment with curb on the right-side				
Right-Hand Curb, %	20	20					
Right-Hand Access Points	4	4	Number of active access points (> 10 veh/h) on the right side of stree	t			
Mid-Segment Delay, s/veh	0.0	10.0	Manual input for additional mid assessed datases and				
Reld Travel Speed, mi/h	22.55	22.55	addressed by HCM (e.g. mid-block pedestrian crossing)				
Field Free-Flow Speed, mi/h	39.33	39.33					
On-Street Parking, %	0	0	Proportion of segment's right-hand curb line with parking stalls				
Speed Calibration Factor, mi/h	0.0	0.0	(parallel or angle)				

HF.	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRA	NSFORM THE FUTURE
	Transportation Institute Technology Transfer Center		
Base F	ree-Flow Speed		
buse i	rec-riow opecu		
Determin	ed as function of segment geometric inputs:		
Traffic and Geometry			
	COL EDT EDR WOL WOT WOR NOL NOT NOR SOL SOT SOR		
Senand, veh-th	200 1000 10 200 1000 10 100 500 50 100 500 50		
ane Width, R	120 120 120 120 120 120 120 120 120 120		
Rompe Length, #	200 0 200 200 0 200 200 0 1000 200 0 1000		
saturation, pic-fu/lin			
neavy venuels, %			
HADR. 1.			
Enders, per la			
india ach			
Defections per la			
Annual Turne	3 4 3 3 4 3 3 3 3 3 3 3 3		
Lingman Filtering (I)	LEB 1.00 LWB 0.78 LNB 1.00 LSB 1.00		
Initial Queue, seh			
ipeed Linit, mith	35 25 25 35 4	Speed constant	
Detector, ft	40 40 40 40 40 40 40 40 40 40 40 40 40	opeeu constant	
TOR, which			
Insignalized Movement			
Unsgnalzed Delay	00 00 00 00 00 00 00		
	E Carabanatana Transmitta Daranah		
STRI	DE Southeastern transportation Research,		90
	I IDDOWATION I INVESTIGATION FOR THE PARTY OF THE PARTY O		011

_			
-			
-			

-			

Hert	oert Wertheim Coll	ege of E	ngineer	ing		POWERI	NG THE N	EW ENGI	EER TO TRANSFO
Level of Service Service measure: Travel Speed (mi/h) as a percentage of base free-flow speed (BFFS)									
1.05	% of REEC	Tra	avel Sp	eed Th	reshol	d by Bl	FS (m	i/h)	Volume-to-
LUS	% 01 BFF3	55	50	45	40	35	30	25	Ratio*
А	> 80%	>44	>40	>36	>32	>28	>24	>20	≤ 1.0
В	67-80%	>37	>34	>30	>27	>23	>20	>17	
С	50-67%	>28	>25	>23	>20	>18	>15	>13	
D	40-50%	>22	>20	>18	>16	>14	>12	>10	
Е	30-40%	>17	>15	>14	>12	>11	>9	>8	
	< 30%	≤17	≤15	≤14	≤12	≤11	≤9	≤8	
F									- 40

	UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
		Transportation institute Technology Transfer Center	
	Quiz		
	Which pe	formance measure is used to evaluate LOS in urban streets	segments?
4	a) Throu	gh Stop Rate	
	 b) Runni c) Eree_f 	ng lime low Speed	
	d) Seam	ent Delay	
	e) Trave	Speed	
	STR	DE Southeastern Transportation Research, Innovation, Development and Education Center	80

Required Data and Units Potential Data Source(s) Suggested Default Value Demand flow rate by movement group boundary intersection (veh/h) Traffic Characteristics Data Image: Characteristics Data Access point flow rate by movement group (veh/h) Field data, past counts Must be provided Excess point flow rate by movement group (veh/h) Field data, past counts See discussion in text
Traffic Characteristics Data Demand flow rate by movement group boundary intersection (veh/h) Field data, past counts Must be provided Access point flow rate by movement group (veh/h) Field data, past counts See discussion in text Estimate using demand flow rate as the provided of the provided (veh/h) Field data, past counts See discussion in text
Demand flow rate by movement group at boundary intersection (veh/h) Field data, past counts Must be provided Access point flow rate by movement group (veh/h) Field data, past counts See discussion in text
Access point flow rate by movement group (veh/h) Field data, past counts See discussion in text Estimate using demand flow rate a
Estimate using demand flow rate a
Midsegment flow rate (veh/h) Field data, past counts the downstream boundary int. approach

UF	Herbert Wertheim College of Engineeri	ng	POWERING TH	HE NEW ENGINEER TO TRANSFORM THE FUTU
Require	ed Input Data			
I	Required Data and Units I	Potential Data	Source(s)	Suggested Default Value
		Geometric Data		
Number of l	anes by movement group at boundary intersectio	n Field data, a	erial photo	Must be provided
	Upstream intersection width (ft)	Field data, a	erial photo	Must be provided
Segment ap	proach turn bay length at boundary intersection (f	t) Field data, a	erial photo	Must be provided
	Number of midsegment through lanes	Field data, a	erial photo	Must be provided
Number	r of lanes at access points – segment approach	Field data, a	erial photo	 (a) Number of through lanes on approach = number of midsegmen through lanes (b) No right-turn lanes (c) If median present, one left-turn lane per approach; otherwise, no left- turn lanes
Number of	f lanes at access points - access point approach	Field data, a	erial photo	One left-turn and one right-turn lane
Segme	nt approach turn bay length at access points (ft)	Field data, a	erial photo	40% of the access point spacing, when spacing = 2 x (5,280)/D _a in feet, but no more than 300 ft nor less than 50 ft
	Contract turn bay length at access points (ft) Southeastern Transportation Research, Innovation, Development and Education Center	Field data, a	erial photo	spacing = 2 x (5,280)/D _a in more than 300 ft nor less th

IF .	Herbert Wertheim College of Engineering	POWERING THE NEW E	INGINEER TO TRANSFORM THE FU
	Transportation Institute Technology Transfer Center		
equir	ed Input Data		
	Required Data and Units	Potential Data Source(s)	Suggested Default Value
	Geometric D	ata, cont	
	Segment length (ft)	Field data, aerial photo	Must be provided
	Restrictive median length (#)	Field data, aerial photo	Must be provided
	Proportion of segment with curb (decimal)	Field data, aerial photo	1.0 (curb present on both sides)
	Number of access point approaches	Field data, aerial photo	See discussion in text
	Proportion of segment with in-street parking (decimal)	Field data	Must be provided
	Other E	Data	
	Analysis period duration (h)	Set by analyst	0.25 h
	Speed limit (mi/h)	Field data, road inventory	Must be provided
	Performance M	easure Data	
	Through control delay at boundary intersection (s/veh)	HCM method output	Must be provided
	Through stopped vehicles at boundary intersection (veh)	HCM method output	Must be provided
2nd and 3rd to	rm back-of-queue size for through movement at boundary intersection (vehlane)	HCM method output	Must be provided
C	apacity by movement group at boundary intersection (veh/h)	HCM method output	Must be provided
	Midsegment delay (s/veh)	Field data	0.0 s/veh
		E 11 1 1	

92

93

95

UF	Herbert Wert	heim College of Engineering	POWERING THE NE	W ENGINEER TO TRANSFORM THE F
Los	Ranges - I	nterchanges		
Equi Refle	valent to 1.5x the LO ects the need to trav	DS ranges for signalized interse el through multiple intersections	s S	
	ETT (s/veh)	v/c \leq 1 and $R_q \leq$ 1 for every lane group	v/c > 1 for any lane group	R _Q > 1 for any lane group
	≤15	А	F	F
	>15-30	В	F	F
	>30-55	С	F	F
	>55-85	D	F	F
	>85-120	E	F	F
	>120	F	F	F
	v/c: demand-t	o-capacity ratio	R _q : queue storage ratio	
сте		ern Transportation Research,		

UF	Herbert Wert	heim College of Engineering	[POWERING THE	NEW ENGINEER TO TRANSFO
LOS	Ranges - A	Iternative Interse	ctions		
Same ra	nges as signalized i	ntersections	Condit	ion	
	ETT (s/veh)	v/c ≤ 1 and R _Q ≤ 1 for every lane group	v/c > 1	for any lane group	R _Q > 1 for any lane group
	≤ 10	А		F	F
	>10-20	В		F	F
	>20-35	С		F	F
	>35-55	D		F	F
	>55-80	E		F	F
	>80	F		F	F
	v/c = demand-	to-capacity ratio F	R _q = queue	storage ratio	
STR	IDE Southeaste	rn Transportation Research, Development and Education Center			

_

109

Herbert Wertheim College of Engineering	POWERING THE NEW	ENGINEER TO TRANSFORM THE FU
Transportation Institute Technology Transfer Center		
quired Input Data		
Parameter	Potential Data Source	Suggest Default Value
Gt	aometric Data	
Area Type	Field data, aerial photo	Must be provided
Number of Lanes (N)	Field data, aerial photo	Must be provided
Average lane width (W, ft)	Field data, aerial photo	12 ft
Grade (G, %)	Field data	Flat approach: 0% Moderate grade: 3% Steep grade: 6%
Existence of exclusive left- or right-turn lanes	Field data, aerial photo	Must be provided
Length of storage for each lane group (La, ft)	Field data, aerial photo	Must be provided
Distances corresponding to the internal storage between the two intersections in the interchange (D, ft)	Field data, aerial photo	Must be provided
Distances corresponding to the internal storage between interchange intersections and adjacent closely space intersections (ft)	Field data, aerial photo	Must be provided
Turning radii for all turning movements (ft)	Field data, aerial photo	Must be provided
Extra travel distance relative to center line (ft)	Field data, aerial photo	Must be provided

110

Transportation Institute Technology Transfer Center		
ed Input Data		
Parameter	Potential Data Source	Suggest Default Value
	Signal Data	
Type of signal control	Field Data	Must be provided
Phase sequence	Field Data	Must be provided
Cycle length (if appropriate) (C, s)	Field Data	Must be provided
Green times (if appropriate) (G, s)	Field Data	Must be provided
Yellow-plus-all-red change-and-clearance interval (intergreen) (Y, s)	Field Data	Must be provided
Offset (if appropriate)	Field Data	Must be provided
Maximum, minimum green, passage times, phase recall (for actuated control)	Field Data	Must be provided
Pedestrian push button	Field Data	Must be provided
Minimum pedestrian green (Gp, s)	Field Data	Must be provided
Phase plan	Field Data	Must be provided

115

Training Slides

Advanced Traffic Signal Timing

,	-	٠	
	۲		

Product Wortherin College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering College of Engineering Product Worthering
5 STRIDE Southeastern Transportation Research, Innovation, Development and Education Cer

5

<page-header> 2012 Exercise Transportion Reserved. 2013 EXERCISE

8

<page-header><page-header><page-header>

UF	Herbert Wertheim College of Engineering	DOWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Learni	ing Objectives	
 After ti Identi Discu 	ne Fundamentals section, you should n ify differences between uncongested an uss concepts of solvability and mitigatio	ow be able to nd congested conditions n
10 STRII	DE Southeastern Transportation Research, Innovation, Derelogment and Education Center	

14 STRIDE Southeastern Transportation Resear

UF	Herbert Wertheim College of Engineering		POWERING THE NE	W ENGINEER TO TRANSFORM	THE FUTURE
Sugg	ested Variable Min	imum Gree	en Parameters	s – STM2 Pag	e 6-7
TableWhat	values are based on si changes for multilane a	ngle lane app approaches?	proaches		
	Distance Between Stop Bar and Nearest Setback Detector (Feet)	Minimum Green (Seconds)	Maximum Variable Initial (Seconds)	Seconds Added per Actuation ¹	
	275	10	25	2.0	
	350	10	31	2.0	
	425	10	37	2.0	
	500	10	43	2.0	
17 STRI	Second Southeastern Transportation Researc Innovation, Development and Educat	s added per actuation h, ion Center	on assumes approximate	ly 2-second headways.	

18

21

	UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
		Transportation Institute Technology Transfer Center	
	4. Con	vert Headway to Passage Time	1
	Passage	e Time = Headway - Time on Detecto	r
	= Head	way - Vehicle Length + Detector Len Speed in ft/sec	gth
	 Desire Vehicle Detect Postect Speed 	d Flow = (chosen) 1500 → Desired He ⇒ Length = (typical) 20 ft. or Length = (field value) 30 ft I Speed Limit = (field value) 45 mph in ft/sec = (must calculate)	adway = (calculated above) 2.4 sec
26	STRI	Southeastern Transportation Research, Innovation, Development and Education Center	

26

University of Florida Transportation Institute • Technology Transfer Center (T2)

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
Learni	ng Objectives	4 m.
 After the second	ne Advanced Detector Operations secti eneral effects of passage time length ribe the difference between headway a	on, you should now be able to
Deter Deter	mine parameter(s) for variable minimum mine parameter(s) for variable passage	n green e time
28 STRII	DE Southeastern Transportation Research, Innovation, Development and Education Center	

Description for the second for the sec

<page-header><page-header><page-header><page-header><page-header><page-header>

ι	JF Herb	ert Wertheim College of Engineeri Kon Institute Technology Tawater Genter	NG POWERING THI	I NEW ENGINEER T	O TRANSFORM THE FUTURE	
Mitigate Storage Bay Spillback with Short Bay Method						
St	eps		Formula	Known	Example	
1.	Conver from fe	t storage bay length et to number of vehicles	$n = \frac{d}{L_v}$	200 ft. bay	200 / 20 = 10 veh	
2.	Conver second	t storage bay flow to s between arrivals	$r = \frac{3600 sec}{v_b}$	400 vph	3600 / 400 = 9 sec	
d	= length of	storage bay in feet				
L_{ν}	= length o	f vehicle + distance gap ir	i feet (20-25 ft.) – sa	mple probl	em use 20 ft	
v_b = flow in storage bay, vehicles per hour						
r = seconds between arrivals						
0 5	TRIDE	Southeastern Transportation Research, Innovation, Development and Education Center				

	U		lerbert Wertheim College of Engineeri amportation Institute Technology Transfer Center	ng	POWERING THE	E NEW ENGINEER T	O TRANSFORM THE FUTURE	
	Mitigate Storage Bay Spillback via Short Bay Method (cont.)							
	Step	os		For	nula	Known	Example	
	3.	Calc	culate cycle length	<i>C</i> =	nr		10 * 9 = 90 sec	
	4.	Calc stora	ulate length of green for age bay	$G_b = 3$	3 + 2n		3 + 2*10 = 23 sec	
	5.	Divid lengt	de remainder of cycle th among other phases		You (Choose Ho	w	
	<i>C</i> = 0	cycle l	length (sec)					
	G_b = green for storage bay (sec)							
4	41 STRIDE Southeastern Transportation Research, Instituin, Development and Education Center							

Λ	1
+	-

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
•	Travaportation Institute Technology Travafer Genter	
Addre	ssing Excess Demand	
Inappr equipr	ropriate timing or failed nent	• Fix these!
Proble	ematic geometry	 Lead-lag phasing, phase reservice, and short bay method
Exces	ss demand	Maximize throughput: Minimize unused green, improve lane flow, and priority movements
 Spillba 	ack from downstream issues	
	DE Southeastern Transportation Research,	

_

Product Workholm College of Engineering Instruction Contraction Research, Striketters Transportation Research, Settlementers Development and Education Contract

47

53

Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE					
Transportation Institute Technology Transfer Center						
Addressing Spillback from Downstream Issues						
•						
 Inappropriate timing or failed equipment 	• Fix these!					
Problematic geometry	 Lead-lag phasing, phase reservice, and short bay method 					
Excess demand	Maximize throughput:					
	 Minimize unused green, improve lane flow, and store vehicles 					
Spillback from downstream issues	Manage Queues					
	 Gating (Metering), Prevent Unsafe Queues, Simultaneous Offsets, Negative Offsets, Double Cycling, 					
54 STRIDE Southeastern Transportation Research, Innovation, Development and Education Center	and Truncating Phases					

UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE						
Addressing Spillback from Downstream Issues via Gating								
 Find the bottleneck Where the queueing starts Focus on throughput at the bottleneck Upstream of the bottleneck (in multiple directions) Design cycle and splits to limit the flow toward the bottleneck Limit flow to just under bottleneck capacity Bottleneck queues should fit in available space Bottleneck queues should be served every cycle 								
55 STRI	DE Southeastern Transportation Research, Innovation, Development and Education Center							

56

Method Network Description Ald ressing Spillback from Downstream Issues by Preventing Unsafe Queues • Identify priority movements • Identify route that serves priority movements • Ald the way through the network • Give preferential treatment to that route • All case sufficient green to priority movements • All case sufficient green to priority movements • All the way through the network • Give preferential treatment to that route • All case sufficient green to priority movements • Provide smooth flow to priority movements • Even if it causes other operational issues (it will!)

57 STRIDE Southeastern Transportation Research, Innovation, Development and Education Co

<image>Check for Questions

59

	UF	Herbert Wertheim College of Engineering	POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE
	Addre Using	ssing Spillback from Downs Sing Spillback from Downs Simultaneous Offsets	tream Issues by
	 Simult Some Use lo Get t Can cl 	aneous offsets naturally gate traffic etimes at good places, sometimes n nger cycle lengths he whole arterial moving before turr reate stops at most/all intersections	ot ing all signals red
60	STRI	DE Southeastern Transportation Research,	

University of Florida Transportation Institute • Technology Transfer Center (T2)

