SITE ANALYSIS AND JUSTIFICATION

HENDRY COUNTY

REPORT

Prepared for

The Florida Department of Transportation

FDOT Contract #BDV33-945-001

Safety Project: Implementing a Transportation Safety Center (TSC) through Florida Local Technical Assistance Program (LTAP)

Prepared by

University of Florida

March 2015

CONTENTS

	Contents		ii
	List of Tab	les	iv
	List of Figu	ıres	iv
1.	Introduc	tion	1
	1.1 Bac	kground	1
	1.2 County	v selection	1
	1.3 Study	methodology	1
	\triangleright	Study team	2
	\triangleright	Data sources and approach to data collection	2
	\triangleright	Benefit-cost (B/C) analysis summary	2
2.	Selectio	n of study sites	3
	2.1 Overvi	ew of crashes in Hendry County	3
	2.2 High c	rash locations in All Crash Analysis	5
	2.3 Empha	asis areas of Strategic Highway Safety Plan	
	\triangleright	Bicycle/ Pedestrian crashes countywide	6
	\triangleright	Intersection crashes countywide	6
	\triangleright	Lane Departure crashes countywide	6
	2.4 Crashe	es in Study Area	7
	\triangleright	Bicycle / Pedestrian crashes in study area	8
	\triangleright	Intersection crashes in study area	8
	\triangleright	Lane Departure crashes in study area	8
3.	Summa	y of recommended countermeasures	.10
4.	Descript	ion and analysis of countermeasures	.12
	4.1 Enhan	ce signing, markings, and recovery areas at major curves	.12
	4.1.1	Curve signing and warning	.13
	4.1.2	Pavement marking and shoulder paving	.13
	\succ	Pavement marking	.13
	\triangleright	Shoulder paving	.15
	4.1.3	Additional treatments at selected curves	.17
	\succ	CR 835 at Rogers Road	.17
	\succ	CR 835 at Blumberg Road	.21
	\succ	CR 835 at Deer Fence Road	.24
		ent markings - tangent sections	
	4.3 Canals	and culverts - tangent sections	.31
	\succ	CR 833 from Java Avenue to SR 80	.33

\triangleright	L-1 Dike / Road intersection	36
\triangleright	CR 835 from CR 833 to SR 80	40
\triangleright	CR 846 from Collier County Line to CR 833	44
Appendix A	- Crash maps	A-1
CR 8	33	A-1
CR 8	35	A-3
CR 8	35 at Rogers Road	A-9
CR 8	46 from Collier County Line to CR 833	A-10
Appendix B	- Basis of cost estimates	B-1
Appendix C	- Calculation of benefit/cost ratios	C-1
Curve	e Sections	C-1
Tang	ent Sections	C-6

LIST OF TABLES

Table 1 Crashes in small counties in District 1 (2006-2013)	. 1
Table 2 Study segments and fatal crashes (2006-20013)	. 4
Table 3 All Crash Analysis listing of High Crash Locations in Hendry County (2010)	. 6
Table 4 Summary of crashes for study sites (2006 – 2013)	. 8
Table 5 Summary of potential countermeasures	11
Table 6 Crashes on CR 835 at Rogers Road	18
Table 7 Crashes on CR 835 west and north of intersection with Blumberg Road	22
Table 8 Crashes on CR 835 west and north of intersection with Deer Fence Road	25
Table 9 B/C for countermeasures at major curves	27
Table 10 B/C – Upgrade signs and pavement markings for tangent sections	30
Table 11 Crash summary – CR 833 from Java Avenue to SR 80	34
Table 12 B/C – Guardrail at CR 833	35
Table 13 Guardrail at L-1 Canal / Intersection	38
Table 14 Crashes on CR 835	42
Table 15 Potential countermeasures for CR 835	43
Table 16 Crashes on CR 846	44
Table 17 Potential countermeasures for CR 846	46
LIST OF FIGURES	
Figure 1 Crashes on local roads in Hendry County (2006- 2013)	. 3
Figure 2 Trend in fatal crashes on local roads in small counties of District 1	. 4
Figure 3 Study segments	. 5
Figure 4 Off-road and rollover crashes involving fatalities for five small counties in District 1 (2006-2013)	. 7
Figure 5 Crashes where vehicle entered a canal	. 9
Figure 6 Major curves on CR 835 and CR 846	12
Figure 7 MUTCD guidance for warning signs at curves	13
Figure 8 Rumble Striping	14
Figure 9 Enhancement of nighttime visibility of a curve using raised pavement markers on shoulders	15
Figure 10 Recommended shoulder paving at curves	16
Figure 11 Safety edge – to be included in shoulder paving	16
Figure 12 CR 835 at Rogers Road	17
Figure 13 Aerial view of CR 835 at Rogers Road	18
Figure 14 Nighttime view at southbound approach to curve at Rogers Road intersection (durin resurfacing of west approach to curve)	

•	Daytime view at southbound approach to curve at Rogers Road intersection (from reet View)	
U	Approximate guardrail configuration at Rogers Road	
	CR 835 at Blumberg Road	
Figure 18	Curve at Blumberg Road	21
Figure 19	Canal along outside of curve at Blumberg Road	22
Figure 20	CR 835 at Blumberg Road	23
Figure 21	CR 835 at Deer Fence Road	24
Figure 22	Curve at intersection of Deer Fence Road with CR 835	24
Figure 23	Southbound approach to curve at Deer Fence Road	25
Figure 24	Recommended Guardrail improvements at Deer Fence Curve/ Intersection	26
Figure 25	Road segments for pavement marking upgrades	29
Figure 26	Crash site where vehicle entered canal	31
Figure 27	Canal crossing without guardrail on CR 835	32
-	Culverts within the study area sorted by length (lengths shown in feet)	
Figure 29	CR 833 from Java Avenue to SR 80	33
Figure 30	Canal along west boundary of CR 833 south of SR 80	34
Figure 31	CR 835 at L-1 Canal/Dike crossing	36
Figure 32	Eastbound approach to bridge over L-1 Canal	36
Figure 33	Intersection of L1 Dike Road	37
Figure 34	Westbound approach to intersection at L-1 Dike Road	37
Figure 35	Recommended guardrail at L-1 Canal / Intersection	38
Figure 36	CR 835	40
Figure 37	Culvert crossings on CR 835	41
Figure 38	Lengths of culvert crossings on CR 835	41
Figure 39	CR 846	44
Figure 40	Guardrail protection at major canal crossing	45
Figure 41	"Unprotected" culvert crossing on CR 846	45

1. INTRODUCTION

1.1 BACKGROUND

The Florida Department of Transportation has recognized that there is a need to assist small communities in Florida to improve highway safety. Federal funds are available for safety improvements on all public roads, but federal guidance requires the programming of safety funds to be data driven. In many cases the smaller communities do not have sufficient technical resources to conduct the required analysis.

Under the direction of the Florida Department of Transportation Office of Safety, the Transportation Safety Center (TSC) at LTAP has been developed to provide such assistance. This report documents a safety study led by TSC for selected road segments in Hendry County.

1.2 COUNTY SELECTION

Data in Table 1 show that Hendry County has the highest number of fatalities of the small counties (<50,000 population) in District 1. Hendry County was selected as the first county in District 1 to receive this assistance.

	Hendry		Desoto		Hardee		Glades	Okeechobee		
Total	943		1071		1006		336		797	
Fatal	48	5%	24	2%	27	3%	10	3%	17	2%
Injury	504	53%	546	51%	421	42%	152	45%	410	51%
Bike	16	2%	25	2%	6	1%	3	1%	21	3%
Pedestrian	36	4%	27	3%	19	2%	7	2%	39	5%

 Table 1 Crashes in small counties in District 1 (2006-2013)

Source: Signal Four Analytics

Much of Hendry County is agricultural with a significant sugar cane operation in the eastern portion of the county. Rural roads mostly follow a grid system and are often located adjacent to major canals.

Roads are well maintained and the County has been steadily upgrading roads as funding allows. Some of the roads with a history of serious crashes have been recently upgraded or are scheduled for improvement during the next five years. However, the need cannot be fully met with current funding levels available in the County's road budget.

Hendry County has a small technical staff including a County Engineer, an Engineer Intern, and a Superintendent with extensive experience in road construction and maintenance. The Public Works Department has GIS capability. Information about road assets such as culverts is available from the County's GIS files. Hendry County is LAP Certified and has had success with this program.

1.3 STUDY METHODOLOGY

The analysis was conducted generally following the principles of the FHWA Road Safety Audit Guidelines. The format for the analysis and report followed the *Local Agency Guide for Developing Highway Safety Projects* prepared by the Transportation Safety Center at LTAP.

> Study team

The study team included various members of UF's research team and representatives of Hendry County who participated in the field reviews and provided supplemental information. Field studies were conducted during both daylight and nighttime conditions.

> Data sources and approach to data collection

Crash analysis was conducted for the period from 2006 through 2013 using Signal Four Analytics (<u>http://s4.geoplan.ufl.edu/</u>). The crash sites were identified and plotted on maps prior to the field study and helped guide the team in investigating the problem areas.

To the extent practical, the team used data obtained from public sources. Culvert information was provided by Hendry County in the form of a GIS shape file. Although much of the photography contained in this report was obtained from Google's Street View, conditions were verified by field observation.

Estimates and approximate feature locations like signs, guardrails, and culverts were considered adequate for estimating costs, but more detailed survey work will be required to obtain the information necessary to develop construction plans and quantities.

Benefit-cost (B/C) analysis summary

Benefit/cost analysis was performed in accordance with the specifications described by the Florida Department of Transportation in State Safety Office Bulletin 10-01, regarding "Benefit/Cost Analysis, Roadside Safety Analysis Program, and Discount (Interest) Rate." Crash costs and the interest rate used in analysis also come from this document (http://www.dot.state.fl.us/rddesign/Bulletin/RDB10-09.pdf).

Crash modification factors used in analysis primarily originate from the FHWA Crash Modification Factor Clearinghouse (<u>http://www.cmfclearinghouse.org/</u>).

Countermeasure costs are based on statewide averages of unit costs (<u>http://www.dot.state.fl.us/specificationsoffice/estimates/historicalcostinformation/AnnualSWAve/AnnualStatewideAverage11.xls</u>).

Quantities used in estimating countermeasure costs are shown in **Appendix B – Basis of cost** estimates.

2. SELECTION OF STUDY SITES

In selecting sites for the study, the TSC study team looked for roads with a history of serious crashes, where no major improvements have been made recently, and where it appears that crashes can be effectively mitigated with short term improvements. The team examined crash information from the FDOT Safety Portal and Signal Four Analytics. The team also discussed the crash problems with Hendry County, and visited several locations before selecting the test sites.

2.1 OVERVIEW OF CRASHES IN HENDRY COUNTY

Figure 1 shows the distribution of local road crashes in Hendry County for the period from January 1, 2006 through December 31, 2013. Crashes in the rural areas are mostly along the major county roads, CR 832, 833, 835, and 846.

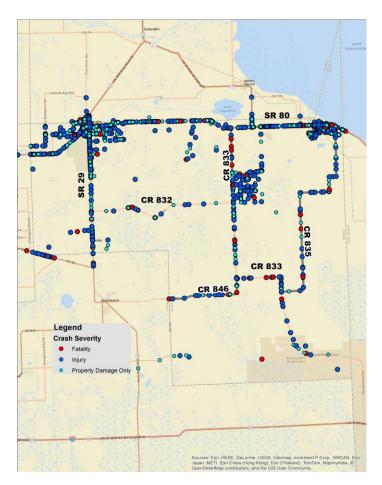
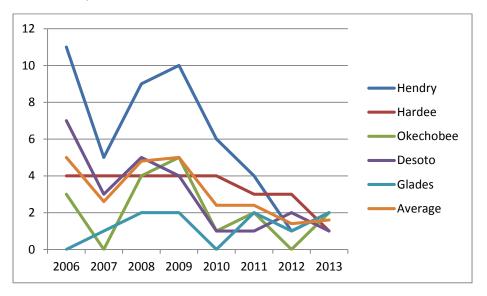



Figure 1 Crashes on local roads in Hendry County (2006-2013)

In recent years, Hendry County has made significant improvements to some of these roads, including portions of CR 832 and southern sections of CR 833. Approximately 13 miles were reconstructed using funds available under American Recovery and Reinvestment Act (ARRA).

In addition, FDOT has assisted with a recent project to upgrade the signage on curves on CR 835.

Figure 2 shows the trend in fatal crashes for Hendry and other small counties in District 1 over the past eight years. No adjustment has been made to account for the reduced travel during the economic slump, but the road improvements made by Hendry County during this period have undoubtedly contributed to this reduction in crashes.

Three major road segments were selected as sites for this safety study and are identified in Table 2 and Figure 3. In these segments, recent road improvements consisting of resurfacing and some signing upgrades have been made. Hendry County plans to reconstruct the intersection of CR 833 and CR 846, so this intersection is not included in this review.

For the period from 2006 through 2013, these three road segments represent nearly15% of the local road miles in Hendry County, yet account for approximately 25% of the fatal crashes on the local road system.

	Approximate Road	% of	Fatal	% of Fatal
#	Miles	Miles	Crashes	Crashes
County Total	349		48	
CR 833	10	2.9%	5	10%
CR 846	11	3.2%	1	2%
CR 835	30	8.6%	6	13%
Study Totals	51	14.6%	12	25%

Table 2 Study segments and fatal crashes (2006-20013)

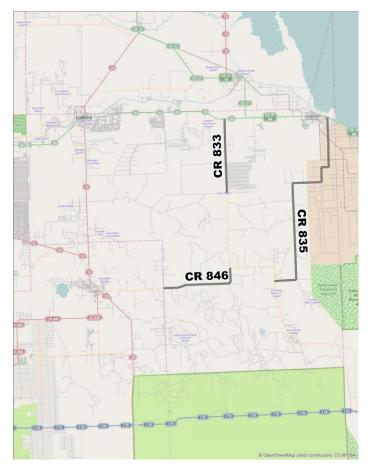


Figure 3 Study segments

2.2 HIGH CRASH LOCATIONS IN ALL CRASH ANALYSIS

FDOT's High Crash location listing on the Safety Portal for Hendry County is summarized in Table 3.

- Three of these sites (#2, # 4, and #5 on CR 835) are within the road segments selected for this study.
- One of the sites, (#3 on CR 832), was recently reconstructed. This improvement will likely address problems indicated by the historic data, so it was excluded from this study.
- Site #1, Sonora Avenue, is a candidate for major construction in the near future. No fatalities were reported in this section, and it was not selected for this study.
- Site #6, Bald Cypress Avenue, runs through a sparsely developed residential area. No fatalities were reported in this section, and it was not selected for this study.

Site #		BMP	EMP	Road Name	No. of Crashes	AADT	Fatalities	Injuries	PDO
1	Segments	0.000	0.700	Sonora Ave	9	2477	0	16	3
2	Intersection	22.887	County Road 835	Unnamed Street	8	1669	1	6	4
3	HRRR ¹	4.800	6.300	County Hwy 832	5	223	2	6	0
4	HRRR	2.300	20.100	County Road 835	8	82	3	9	0
5	HRRR	22.600	23.100	County Road 835	4	1669	1	6	0
6	HRRR	0.000	3.491	Bald Cypress Ave	4	44	0	8	0

Table 3 All Crash Analysis listing of High Crash Locations in Hendry County (2010)

Source: FDOT All Crash Analysis

2.3 EMPHASIS AREAS OF STRATEGIC HIGHWAY SAFETY PLAN

The Strategic Highway Safety Plan emphasizes bicycle / pedestrian, intersection, and lane departures crashes as priorities.

> Bicycle/ Pedestrian crashes countywide

In Hendry County, most of the bicycle / pedestrian crashes occurred in the urban areas of Labelle and Clewiston. Sidewalks have been recently constructed in these areas, so historical data may not accurately reflect the extent to which this problem has been addressed by these projects.

Intersection crashes countywide

Intersection crashes are mostly within the urban area and account for approximately thirteen percent of the serious crashes in Hendry County. This is consistent with the percentage of serious intersection crashes in the other five small counties in District 1.

> Lane Departure crashes countywide

Lane departures account for the most crashes in Hendry County. During the period 2006 through 2013, 308 (34%) of all crashes in Hendry County were classified as either "offroad" or "rollover". This compares to 23% for all five small counties in District 1.

¹ HRRR – (High Risk Rural Roads) "The Department uses methodology for HRRR that identifies hazardous locations, prioritizes the locations by severity, and selects the most severe location for project development. Analyses are based on fatal and serious injury crash rates for rural major collector, minor collector, and local road segments. Segments selected are those with average crash rates that are higher than the district's average crash rate for the same roadway type and on which there are a statistically significant number of fatal and serious injury crashes.....".

Figure 4 shows the distribution of the fatal off-road and rollover crashes. There were 56 off-road or rollover crashes involving fatalities in all five small counties. Of these, 23 (41%) were in Hendry County.

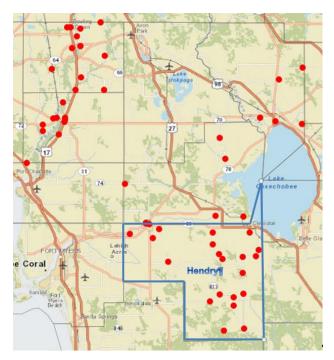


Figure 4 Off-road and rollover crashes involving fatalities for five small counties in District 1 (2006-2013)

2.4 CRASHES IN STUDY AREA

The crash analysis for the study sites was based on long form crash records for the period from January 1, 2006 to December 31, 2013. This eight-year period provides a more complete picture of the crash experience than the three or five-year periods commonly used. During this period, there were few significant changes in the characteristics of the study sections.

Maps showing the location of the crashes are included for all study segments in - Crash maps.

					In		Non
Crash Type	Total	Fatal	Injury	PDO	Canal	Daylight	Daylight
ped/bike	3	2	1	0	0	0	3
Animal	11	0	6	5	0	4	7
Intersect/driveway	15	0	8	7	0	13	2
Lane depart- on road	18	1	14	3	1	12	6
Lane depart - off-road	49	10	25	14	29	21	28
debris	0	0	0	0	0	0	0
other	1	0	1	0	0	1	0
Totals	97	13	55	29	30	51	46

Table 4 Summary of crashes for study sites (2006 – 2013)

Crash types were summarized from the crash records as follows: Intersect/driveway: Crash type: Rt turn, Lt turn, Rear end, Angle Lane departure – on road: --Crash type: Head-on, Sideswipe Lane departure – off-road: --Crash type: Off-road, Rollover To determine whether a vehicle entered a canal, the narrative and diagrams for each crash record were reviewed.

> Bicycle / Pedestrian crashes in study area

Within the study area, one bicycle and one pedestrian crash were identified. Both of these involved persons walking or riding in the travel way of a rural road in non-daylight hours. Another crash, categorized as pedestrian, was apparently a homicide in which the victim was found on the roadway.

> Intersection crashes in study area

Within the study area, intersections are sparse. Sixteen percent of crashes in these areas involve maneuvers typical of driveway or intersections. Countywide intersection related crashes account for 29% of the total crashes.

> Lane Departure crashes in study area

Over half of the crashes in the study involved vehicles that left the roadway. These accounted for ten of the thirteen fatalities. The dominant concern within the study area is with the lane departure crashes, particularly where the vehicle left the roadway.

The crash summary in Table 4 shows that of the off-road/rollover crashes, 29 of 49 crashes involved vehicles entering a canal. Seven of thirteen fatalities in the study area involved vehicles entering a canal. Figure 5 shows these crash locations.

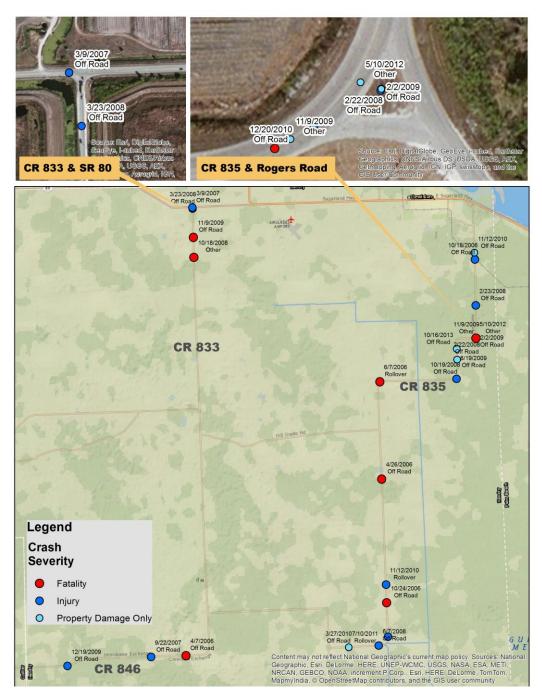


Figure 5 Crashes where vehicle entered a canal

3. SUMMARY OF RECOMMENDED COUNTERMEASURES

Table 5 provides a summary of potential countermeasures which are described in detail in a subsequent section: **4. Description and analysis of countermeasures.** Detailed cost and benefit calculations are shown in **Appendix C - Calculation of benefit/cost ratios**.

For the purpose of calculating benefits, similar countermeasures at several locations are organized in combinations that represent logical groups. Since budget limitations may make it difficult to fully fund improvements at all locations identified for each "countermeasure group", cost estimates and suggested priorities are shown for individual locations within these "groups".

Countermeasure groups: Curves

Level 1 refers to upgrade of signs. (Some of this work has already been completed by FDOT.) (see **4.1.1 Curve signing and warning).**

Level 2 includes both the Level 1 improvements and the additional work associated with paving shoulders in the curves. (see **4.1.2 Pavement marking and shoulder paving).**

Level 3 includes the Level 1 and 2 work as well as further enhancements at three of the curves. (see **4.1.3 Additional treatments at selected curves).**

Countermeasure groups: Tangents

For the Tangent groups, Level 1 refers to upgrade of pavement markings at all sections within the study site. (see **4.2 Pavement markings -** tangent sections).

Level 2 countermeasures for the tangent areas include Level 1 improvements with the addition of guardrail along canals. (see **4.3 Canals and culverts - tangent sections.)**

The improvement identified as "CR 835 – Various Locations" will require a more detailed analysis before specific projects can be developed for implementation. The costs and benefit analysis for this improvement were based on a review of aerial photography and limited "windshield survey" of the area. While this information provided an "order of magnitude" estimate of costs and potential benefits, a more detailed survey that was beyond the scope of this study will be needed.

Table 5 Summary of potential countermeasures

					_	Counterme				1	
Curve Sections	_			Level 1		Le	vel	2		Level 3	
					Priority	Pavement	Priority	Paved	Priority		Prioritv
				0:	Prić		Prić		Pric	Quandaail	Prić
00.005				Signs		Markings		Shoulders		Guardrail	
CR 835		Rogers Road		9,898	1	10,591	2	204,545	2	33,840	
CR 835		Blumberg Road		11,895	1	12,136		939,351	2	47,955	
CR 835		tween Rogers ar	-	11,447	1	11,461		257,576	3		
CR 835			e and Blumberg	13,444	1	13,821		310,606			
CR 835	At	Deer Fence		15,889	1	16,518		371,212		17,953	
CR 846				17,438	1	20,057	2	450,758	3		
											_
			Cost	80,010				80,010			-
			NPV	274,501							
			B/C	18.98							
			Cost	Includes Lev	els 1	and 2 cost		2,698,643			
			NPV					339,232			
	_		B/C				_	2.75			
			Cost	Includes Lev	els 1	and 2 cost				2,798,390	
			NPV							387,670	
			B/C							2.93	_
						Counterme	easi				
				Level 1				Level 2			
					Priority		Priority		Priority		Priority
Tangent Sections				Pavement	nio	Guardrail	nio	Guardrail	nio	Guardrail	nio
				Markings		CR 833	ų,	L-1 Canal	μ	CR 835	4
CR 833				256,805	2	606,644	3				
	_										
CR 835	L-1	Canal Crossing						47,738	3		
CR 835	Va	rious Locations		731,669	2					2,116,617	4
	_										
CR 846				275,366	2						
			Cost	1,263,840							_
			NPV	680,499							
	_		B/C	3.82							
			Cost			606,644					_
Priority	Est	imated Cost	NPV			125,095					
			B/C			4.2					
1	\$	80,010	Cost					47,738			
2	\$	2,574,115	NPV **					3,285	**		1
3	\$	2,062,486	B/C **					1.98	**		1
								1.30		0.440.01-	
4	\$	2,116,617	Cost							2,116,617	
			NPV							134,369	
			B/C							1.98	
**	The	e traditional "spot	" analysis of the be	nefits for this s	hort	improvement doe	s no	t adequately re	eflect		1
			guardrail at this loca								1
			mitigated by the im								1
			here the risk factors								1
			C ratio is used as th								1
		tion within the co									1

4. DESCRIPTION AND ANALYSIS OF COUNTERMEASURES

For the study area, the primary focus is on lane departure crashes and measures to mitigate the seriousness of these crashes. Opportunities for cost effective mitigation are:

- 1. Enhance warnings and recovery areas at six major curves
- 2. Upgrade pavement markings, including "rumble stripes"
- 3. Pave shoulders
- 4. Install guardrail or other barriers along canals

4.1 ENHANCE SIGNING, MARKINGS, AND RECOVERY AREAS AT MAJOR CURVES

The road segments on CR 846 and CR 835 have a total of six - 90 degree curves separated by long tangents (excluding the curve at the intersection of CR 846 and CR 833). The locations of these curves are identified in Figure 6.

Figure 6 Major curves on CR 835 and CR 846

The grade throughout the area is flat. Lack of geographic features such as trees, buildings or other features to define the edge of right of way requires the driver to rely almost completely on his/her view of the roadway surface and guide signs to understand that there is a change in road alignment.

While the road is relatively easy to see in the daylight hours, at night the road surface is visible to the driver only a short distance ahead of the vehicle. Without other defining features to alert the driver to a change in alignment, it is easy for a driver to miss the cue when it is time to turn. This problem is exacerbated by the fact that the approaches are generally long tangents, where

a driver's attention is likely to be somewhat relaxed. The problem is especially serious in the instances where a canal is located adjacent to the road, and loss of control may result in a vehicle entering the canal.

Fourteen crashes occurred at curves in the study area. These were concentrated at two locations, but many of the risk factors exist at all six curves. Only two of these occurred during daylight hours, indicating that nighttime visibility is a major contributor to the problem. Eleven of the fourteen crashes involved vehicles entering a canal, and one resulted in a fatality.

The following countermeasures apply to all six curves within the study area. Additional countermeasures are suggested to address unique conditions at three of the curves.

4.1.1 Curve signing and warning

The combination of environmental conditions and the severity of crashes involving road departures at these curves warrant additional treatments in accordance with MUTCD guidance for enhanced conspicuity. In addition to the signs shown in Figure 7, "bright sticks" should be installed on all sign posts, including chevrons, and flashing beacons should be added at Rogers Road.

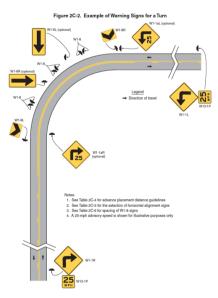


Figure 7 MUTCD guidance for warning signs at curves

4.1.2 Pavement marking and shoulder paving

Pavement marking

Nighttime delineation of the lanes through the curves is critical, but truck traffic associated with the agricultural operations in the area presents a special problem for maintaining the pavement markings. The following recommended treatments for lane delineation through the curves are intended to maintain high quality delineation of the pavement while minimizing the deterioration caused by turning vehicles.

• "Rumble stripes" for centerline delineation (Figure 8). Ground in place rumble stripes should help guide vehicles through the curves and provide a surface for the pavement marking that is more durable than conventional striping and RPMs.

• "Rumble stripes" for outside lane delineation through the curves. In addition to providing critical alerts to drivers who may drift out of the lane, "rumble strips" along the outside lane line should discourage traffic from driving on RPMs on the shoulders.

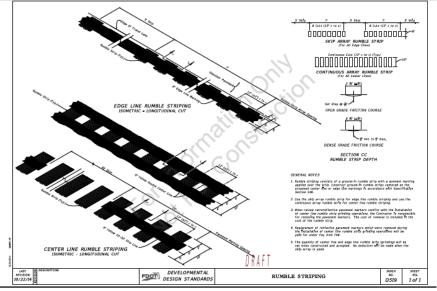


Figure 8 Rumble Striping

 Supplemental RPMs and chevron stripes on shoulders through curves and approaches. This treatment, especially on the outside of the curve, can be especially effective in providing nighttime delineation of the pavement and alerting the driver to the change in alignment. Placement of the ground in place rumble stripe at the lane line should help reduce the traffic over the RPMs.

This photograph illustrates how pavement markings, including raised pavement markers can be used to enhance the nighttime visibility of a curve.

Figure 9 Enhancement of nighttime visibility of a curve using raised pavement markers on shoulders

Shoulder paving

At several of the curves the inside shoulder has been paved. This has generally addressed the problem of pavement edge drop-offs along the inside edge of, but additional shoulder paving along the outside edge would provide enhance the recovery area and allow for placement of the supplemental pavement markings.

The following treatment for shoulder paving and pavement marking is recommended for each of the six major curves:

- Add paved shoulder throughout curve and approaches as shown in Figure 10. In some cases, right of way or presence of ditches may limit the widening. At a minimum, the pavement should be 22 feet plus three feet for shoulders. Extend this cross section 500 feet in each direction from the PC and PT of the curve. (For most of the curves, the inside shoulder has been paved, but for the purposes of cost estimates it, is assumed the shoulder will be repaved throughout the entire length of the curve.)
- Use safety edge for all shoulder paving. (Figure 11)
- For pavement markings on the shoulder, use diagonal markings similar to the markings now in place on the inside paved shoulders at curves. Space these markings at 20 feet, and extend the pattern for the full length of the paved shoulder. Supplement the diagonal stripes with RPMs.

Figure 10 Recommended shoulder paving at curves

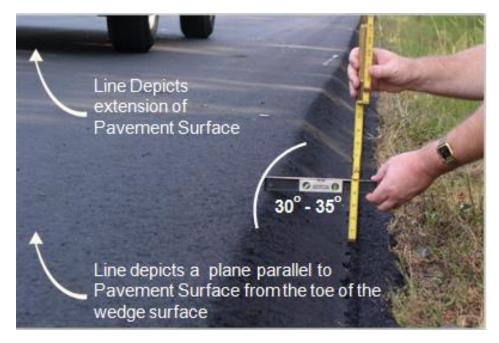


Figure 11 Safety edge – to be included in shoulder paving

4.1.3 Additional treatments at selected curves

In addition to the area-wide issues discussed in the previous section, the following discussions address site specific issues at several locations and include additional countermeasures to address these concerns.

Regers Road

> CR 835 at Rogers Road

Figure 12 CR 835 at Rogers Road

This curve has the most serious crash record of all locations reviewed. It has a posted advisory speed of 25 mph. Concerns at this location include:

- A large canal is located along the southern limits of the curve/intersection.
- The southbound approach is a long tangent through agricultural lands with a uniform appearance. There are few visual cues that the alignment changes abruptly, especially at night.
- Poles for a major power line along the south edge of the CR 835 right of way represent fixed obstacles. While they are outside the clear zone these have been struck by vehicles that failed to negotiate the turn. There is a short section of guardrail parallel to the canal, but it provides little opportunity to redirect a southbound vehicle.

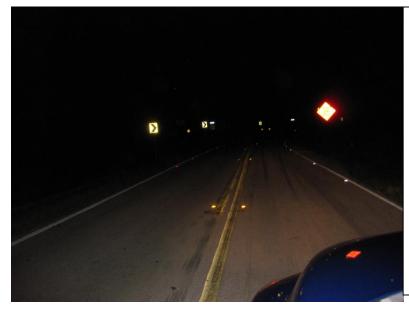


Figure 13 Aerial view of CR 835 at Rogers Road

Twelve crashes were reported at this location. Ten of these involved vehicles that entered the canal, most from the southbound direction. One of these was fatal. Ten of the twelve crashes were in non-daylight conditions.

Table 6 Crashes on CR 835 at Rogers Road

Crash Type	Total	Fatal	Injury	PDO	In Canal	Day	Non day
ped/bike	0						
Animal	0						
Intersect/driveway	0						
Lane depart- on road	0						
Lane depart - off-road	12	1	4	7	10	2	10
Total	12	1	4	7	10	2	10

At the southbound approach to Rogers Road, the temporary construction warning sign with a flasher highlighted the intersection ahead, but the sign was removed at the completion of the construction (west of the curve).

New pavement markings have been applied through the curve in conjunction with recent resurfacing of the western approach to the curve.

Figure 14 Nighttime view at southbound approach to curve at Rogers Road intersection (during resurfacing of west approach to curve)

In this daytime photograph of the Rogers Road approach, the curve is more discernible, but the absence of other visual cues could make it difficult for an inattentive driver to slow adequately to negotiate the curve at a safe speed.

Figure 15 Daytime view at southbound approach to curve at Rogers Road intersection (from Google Street View)

Countermeasures:

- Upgrade signs and pavement markings; pave shoulders (included in recommendations for all major curves).
- Install advanced warning beacons on southbound and eastbound approaches to the curve.
- Install luminaires. Illumination of the area around a curve will alert the driver well in advance that there is a change in the features of the road and will provide positive assistance in helping identify the changes in the configuration. This is a critical feature for this location since most of the crashes occur at night. (Electrical service appears to be available at this location.).

If luminaires cannot be added to existing poles, consider placing any additional poles along the inside of the curve.

• Install guardrail, cable, or other positive barrier to redirect southbound vehicles that fail to negotiate the curve to prevent them from entering the canal.

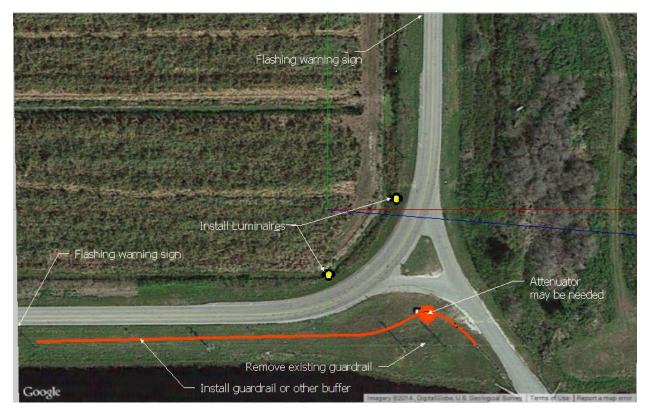


Figure 16 Approximate guardrail configuration at Rogers Road

> CR 835 at Blumberg Road

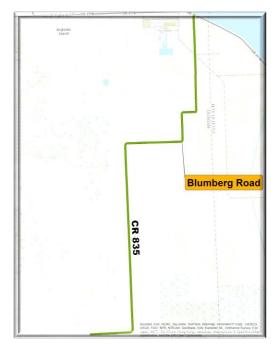


Figure 17 CR 835 at Blumberg Road

Blumberg Road intersects CR 835 near the midpoint of a curve. A substantial canal runs along the outside radius of the curve (Figure 18). Only the inside shoulder is paved. Some pavement edge drop-offs were noted on the outside pavement edge, and the outside shoulder slopes sharply toward the canal

The cross slope (superelevation rate) of the pavement varies through the curve. For the eastnorthbound traffic, such variations may make it difficult for the driver to follow the alignment of the road through the curve.

Figure 18 Curve at Blumberg Road

Signs have been recently upgraded, but pavement markings are worn. The primary concern at this location is that vehicles exiting to the outside of the curve have little opportunity to recover, and are likely to enter the canal.

This photograph, looking southeasterly from Blumberg Road, shows the shoulder sloping downward toward the canal. A vehicle that leaves the road in this area would have difficulty staying out of the canal.

Figure 19 Canal along outside of curve at Blumberg Road

Table 7 shows crashes for both approaches and the curve at Blumberg Road. Two crashes were recorded within the limits of the curve. In both instances, eastbound vehicles left the pavement to the right and were unable to regain control. One of these vehicles entered the canal. Both of these crashes occurred during non-daylight hours.

Table 7 Crashes on CR 835 west and north of intersection with Blumberg Road

Crash Type	Total	Fatal	Injury	PDO	In Canal	Day	Non day
ped/bike	1		1				1
Animal	1			1		1	
Intersect/driveway	0						
Lane depart- on road	4		3	1		4	
Lane depart - off-road	3		1	2	2	1	2
Total	9	0	5	4	2	6	3

Countermeasures:

• Upgrade signs and pavement markings; pave shoulders (included in recommendations for all major curves).

Widening CR 835 to the outside would involve some fill in the canal. The recommended alternative is to widen the pavement to the inside of the curve, and shift the travel lanes further away from the canal.

- Restore appropriate superelevation rate throughout the length of the curve.
- Install guardrail along the outside edge of the curve. This would include extending the guardrail onto Blumberg Road.

This would require extension and possible replacement of one or more culverts on Blumberg Road. Hendry County has indicated they would replace this culvert.

Figure 20 CR 835 at Blumberg Road

> CR 835 at Deer Fence Road

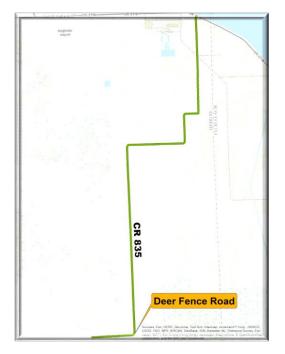


Figure 21 CR 835 at Deer Fence Road

CR 835 intersects an unpaved road, designated as Deer Fence Road, at a 90 degree curve. A SFWMD canal is located along the inside radius of the curve. There is a bridge over a canal at approximately the midpoint of the curve. The bridge has guardrail on the approaches, but this guardrail is short and leaves an unprotected area Shoulders on both sides of the road are unpaved and show signs of erosion and pavement edge drop-offs. (See Figure 23)

Figure 22 Curve at intersection of Deer Fence Road with CR 835

Figure 23 Southbound approach to curve at Deer Fence Road

During the study period, no crashes were reported within the limits of the curve; however, there were crashes to the north and west of the curve. The canal crossing with a narrow bridge, the intersection, and the change in alignment all add risk factors that make conditions at the curve even more severe.

Table 8 shows the crash history on the tangent sections to the west and north of Deer Fence Road. Of the sixteen crashes in this section, twelve were classified as either "off-road" or "rollover". In eight crashes, vehicles entered a canal. Three of these crashes where vehicles entered the canals were fatal. In this area, approximately half of the lane departure crashes occurred during the daylight hours.

Crash Type	Total	Fatal	Injury	PDO	In Canal	Day	Non day
ped/bike	1	1					1
Animal	2		1	1		1	1
Intersect/driveway	0						
Lane depart- on road	2		2		1	1	1
Lane depart off-road	12	4	5	3	7	7	5
Total	17	5	8	4	8	9	8

Table 8 Crashes on CR 835 west and north of intersection with Deer Fence Road

Countermeasures:

- Upgrade signs and pavement markings; pave shoulders (included in recommendations for all major curves).
- Upgrade and extend guardrail at bridge.

Figure 24 Recommended Guardrail improvements at Deer Fence Curve/ Intersection

Level	Countermeasure	Estimated Cost	Benefit/Cost	NPV
1.	Upgrade warning signs at all curves	\$ 80,010	18.98	\$274,501
2.	Construct paved shoulders, upgrade markings to include audible centerline and edge line marking and shoulder pavement markings (all curves)	\$2,698,643	2.75	\$339,232
3	Additional countermeasures at three curves	\$2,798,390	2.93	\$387,670
	Rogers Road			
	 Install luminaires Flashers for advanced warnings (both approaches) Upgrade guardrail 			
	Blumberg Road			
	 Add guardrail along northbound lane and on Blumberg Road approaches Level pavement to restore consistent superelevation throughout the length of the curve. 			
	Deer Fence Road			
	Upgrade and extend guardrail			

 Table 9 B/C for countermeasures at major curves

Factors affecting implementation

Right of way	It appears that improvements can be made within existing right of way. For the pavement widening at Blumberg road, some survey information may be required.
Environmental impacts	Shoulder and culvert work at Blumberg might involve fill in existing canal; Shifting the alignment to add the widening on the inside radius of the curve will eliminate the need to fill on the south/east side of the curve and will significantly reduce potential for environmental impact. Widening may require coordination with permitting agencies.
Utilities	Installation of luminaire at Rogers Road will require power connection. Transmission lines are on site, and power may be available.
	Unless flashing beacons are solar powered, power source will be required.
	Shoulder paving will require coordination with utilities.
Community impacts	None anticipated.

4.2 PAVEMENT MARKINGS - TANGENT SECTIONS

The frequency of lane departure crashes in the study area, especially at night, suggests that upgraded lane marking are needed. All three roads in the study area are marked with centerline and edge markings, but in most areas the markings are worn and need to be refreshed. Raised pavement markers were original installed along the centerline and along the edge markings of the curves, but many are now missing or damaged.

Countermeasures:

- Restripe centerline, including replacement of RPMs, for all tangent sections within the study area.
- Install ground in place "rumble stripe" (Figure 8) along edge line of all roads except CR 835 from Joshua Boulevard to SR 80.
- Restripe edge line without rumble feature for CR 835 from Joshua Boulevard to SR 80. This area runs through a developed urban area where speeds are lower, lane departure crashes have been less severe, and noise from "rumble stripes" is likely to be objectionable (approximately 1.25 miles).

The map in Figure 25 shows the locations of the segments for marking upgrades.

Hendry County has recently resurfaced short sections of CR 835. In these areas, the pavement markings have been refreshed with thermoplastic centerline and edge markings and RPMs along the centerline. None of these have included audible/vibratory edge markings. Cost estimates are based on restriping and marking these sections in their entirety. Detailed survey of the existing conditions should be conducted before final plans are prepared and certain sections may be eliminated where the current markings still meet the intent of the countermeasure or resurfacing will be scheduled in the near future.

Figure 25 Road segments for pavement marking upgrades

Road	Countermeasure	Miles	Estimated Cost	B/C	NPV
CR 833	 Refresh and upgrade pavement markings on centerline and edge. Including rumble strips 	10.1			
CR 835	• Refresh and upgrade pavement markings on centerline and edge. Including rumble strips	10.83			
CR 846	 Refresh and upgrade pavement markings on centerline and edge. Including rumble strips 	28.78			
All sections		49.71	\$1,263,840	3.82	\$680,499

Table 10 B/C – Upgrade signs and pavement markings for tangent sections²

Factors affecting implementation

Right of way	All improvements can be implemented within existing right of way.
Environmental impacts	No significant environmental impacts are expected.
Utilities	No conflicts are anticipated.

² Cost of markings through curves is included in the discussion of Major Curves.

4.3 CANALS AND CULVERTS - TANGENT SECTIONS

Canals or deep ditches are common along the rights of way throughout the study area. These canals provide for drainage and irrigation for the agricultural operations. Some are managed by the South Florida Water Management District; others by private owners. The canals vary in width and depth.

Most canals are located outside of, but adjacent to the road rights of way. The canal banks are steep and errant vehicles that get beyond the edge of the right of way may have little chance of recovering. **Over half of the fatalities in the study area involved vehicles that entered a canal.**

In addition to canals parallel to the roadway, numerous canals and drainage ditches cross the road through culverts or small bridges. Figure 27 depicts one of the more severe conditions. Most major crossings have guardrail protection, but some of the smaller ditches and canals do not have this protection. Figure 28 shows the lengths of crossing culverts on all three roads within the study area.

In this recent crash, the driver reportedly fell asleep and crossed the road. striking the end of the guardrail. The vehicle overturned into the canal. Driver and passenger were able to escape by breaking out a window and sustained only minor cuts from the broken glass.

Figure 26 Crash site where vehicle entered canal

This photograph shows an unprotected crossing on CR 835. Pavement is approximately 20 feet wide. Distance between end walls is approximately 30 feet.

Figure 27 Canal crossing without guardrail on CR 835

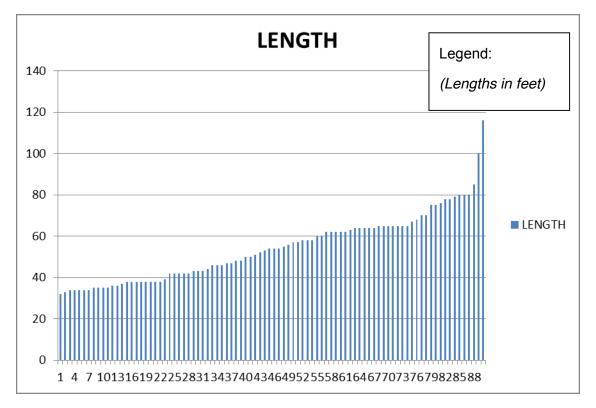


Figure 28 Culverts within the study area sorted by length (lengths shown in feet)

Source Hendry County GIS

In addition to upgrading the pavement markings to include audible/vibratory edge lines, two other alternatives were considered to reduce severe off-road crashes in the tangent sections: These were:

Shoulder paving

Addition of paved shoulders in the tangent sections has a relatively low benefit/ cost ratio. The cost of adding paved shoulders for the entire study area was estimated at nearly \$20 Million with a B/C of less than 1.0. Except at curves, construction of paved shoulders on tangent sections does not appear to meet the threshold for HSIP funding at this time.

Guardrail (or cable barrier) along the canals, including culvert crossings.

Canals along the road are generally outside the road right of way, but a barrier would reduce the severity of off-road crashes. In many locations, a cable barrier may be a preferred alternate, but for the purpose of this report, cost estimates are based on use of guardrail. Selection of cable or guardrail should be made based on detail review of each site and consultation with Hendry County.

For some culvert crossings, extending the culvert or replacing headwalls with mitered end sections may be more appropriate.

> CR 833 from Java Avenue to SR 80

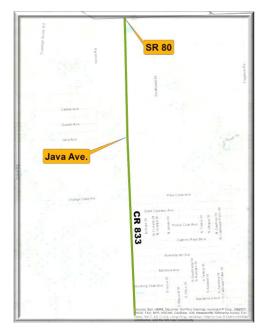


Figure 29 CR 833 from Java Avenue to SR 80

CR 833 from Java Avenue to SR 80 (4 miles) is bounded on the west side by a continuous canal under the jurisdiction of the South Florida Water Management District (SFWMD). The distance between the canal and the roadway varies from less than 20 feet near the intersection with SR 80 to more than 30 feet. Guardrail installations are present at intersections/driveways that cross the canal, but these generally extend only a short distance along CR 833.

Figure 30 Canal along west boundary of CR 833 south of SR 80

Table 11 shows the crash data for this section.

- Six crashes were designated as off-road or rollover. Four others involved vehicles entering the canal.
- There were three total fatalities two involving vehicles in the canal.

Crash Type	Total	Fatal	Injury	PDO	In Canal	Day	Non day
Bike/Ped							
Animal							
Intersect/driveway	6		3	3		6	
Lane depart- on road	2	1	1			1	1
Lane depart - off-road	6	2	4		4	2	4
Total	14	3	8	3	4	9	5

Table 11 Crash summary – CR 833 from Java Avenue to SR 80

For the section of CR 833 South of Java Avenue, there are a limited number of canal crossings. None of these are shorter than 40 feet. None of the crashes in this section were associated with the culvert crossings.

Table 12 B/C – Guardrail at CR 833

Level	Countermeasure	Cost	B/C	NPV
1	Upgrade pavement markings (This is included in 4.2 Pavement markings - tangent sections)			
2	Install guardrail along the west side of CR 833 between Java Avenue and SR 80	\$606,644	4.2	\$125,095

Note: Benefit and cost calculations for guardrail reflect the incremental benefits and costs after pavement markings are installed.

Factors affecting implementation

Right of way	Right of way in this corridor appears to be adequate. Verification of exact right of way limits is needed.
Environmental impacts	No significant environmental impacts are expected from guardrail north of Java Avenue.
Utilities	No significant conflicts are apparent, but will require standard utility coordination.
Community impacts	No community impacts are anticipated.

> L-1 Dike / Road intersection

Figure 31 CR 835 at L-1 Canal/Dike crossing

An unpaved road intersects CR 835 at the L-1 Canal/Dike of SFWMD. This intersection is at the top of the dike making it difficult for drivers approaching the intersection from either direction to see the road surface. Signs designate a school bus stop in the area, but there are no intersection warning signs.

The bridge crossing the canal is narrow and does not have guardrail on the approaches. Traffic on CR 835 is exposed to both the canal crossing the road and canals on each side of the embankment.

Figure 32 Eastbound approach to bridge over L-1 Canal

A small recreation area with a boat ramp is located just west of the L-1 Canal.

Although no crashes were reported at this intersection, the skid marks on the CR 835 approaches indicate that advanced warning for the intersection is needed. One reported crash was attributed to a vehicle with a wide load striking the bridge rail.

No crashes involving vehicles entering the canal at this specific location were reported during the analysis period; however, a recent crash was reported in which a vehicle entered the canal in the area of the boat ramp just west of the canal. The steep slopes on the approaches and the narrow bridge with exposed abutments are risk factors not present at most other locations in the corridor where vehicles did enter a canal.

Figure 33 Intersection of L1 Dike Road

Figure 34 Westbound approach to intersection at L-1 Dike Road

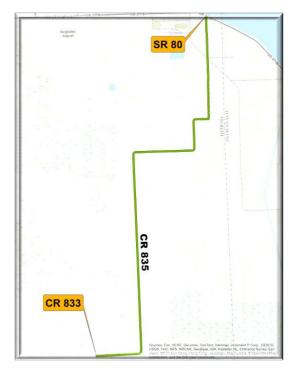
Countermeasures:

- Advanced warning signs alerting drivers to the intersection and narrow bridge.
- Guardrail at the bridge (Figure 35). Guardrail should be extended across the bridge.

Figure 35 Recommended guardrail at L-1 Canal / Intersection

Table 13 Guardrail at L-1 Canal / Intersection

Level	Countermeasure	Cost	B/C	NPV
1	Upgrade pavement markings (This is included in			
	4.2 Pavement markings - tangent sections)			
2	Upgrade signs to include:Advanced warnings for intersectionNarrow bridge	\$47,738	1.98	\$3,285
	Add guardrail at bridge approaches			


Note: Benefit and cost calculations for guardrail reflect the incremental benefits and costs after pavement markings are installed.

No crashes involving the canal were reported within the limits of the proposed guardrail project at L-1 Canal Crossing, although the risk factors appear to be greater than at other sections of CR 835 where such crashes occurred. For this analysis it is assumed that the B/C for the entire corridor would apply to this short segment within the corridor.

Factors affecting implementation

Right of way	No apparent additional right of way required.
Environmental impacts	None anticipated.
Utilities	Guardrail installation will require coordination with utilities.
Community impacts	None anticipated.

> CR 835 from CR 833 to SR 80

Figure 36 CR 835

The northern end of this corridor (approximately 1.5 miles) lies within the developed area of Clewiston. The rest of the corridor passes through a large agricultural area. Throughout much of the corridor, large canals are located along at least one side of the road.

For this study, the extent of the canals that need protection was estimated from aerial photography. More detailed measurements and surveys will be required to develop an exact scope for a safety improvement project. However, in the tangent sections it is estimated that there are approximately twelve miles of roadway with canals adjacent to one or both sides.

There are also a significant number of culverts crossing the road. Nearly 30% of the culverts are less than 40 feet long (see Figure 38).

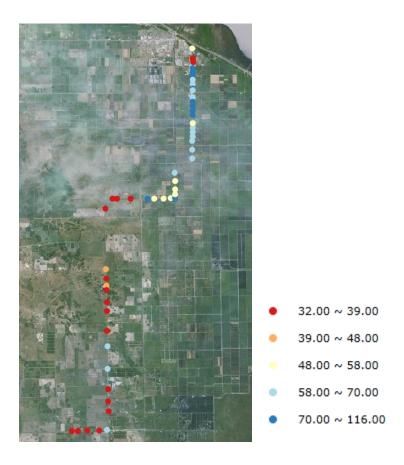


Figure 37 Culvert crossings on CR 835

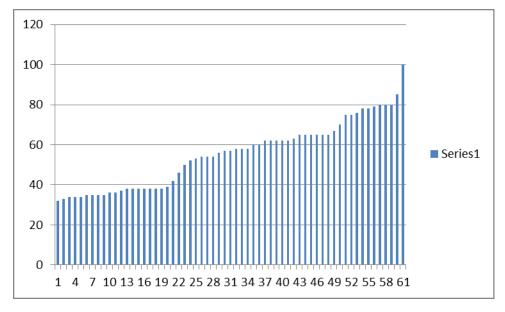


Figure 38 Lengths of culvert crossings on CR 835

In nearly half (23) of the crashes in this corridor, a vehicle entered a canal. Eleven of these canal related crashes occurred in the curves. Twelve of these were in the tangent sections.

Culvert crossings were not identified as a contributor to any of these crashes but the conditions at these crossings make them a particular concern.

Crash							Non
Туре	Total	Fatal	Injury	PDO	In Canal Day		day
Ped/bike	2	1	1	0	0	0	2
Animal	4	0	2	2	0	3	1
Intersect/driveway	6	0	3	3	0	6	0
Lane depart- on road	10	0	8	2	1	8	2
Lane depart - off-road	33	6	14	13	22	12	21
Debris	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0
Total	55	7	28	20	23	29	26

Countermeasures:

• Install guardrail along the canals at various locations throughout the corridor.

The numbers used here to estimate the guardrail needed for CR 835 represent a rough estimate based on a "windshield survey" and examination of aerial photography. More detailed data collection and analysis will be required to develop specific improvement projects in this corridor. The purpose of this analysis is to provide a general review of the problem and potential feasibility for safety improvements.

• Extend culverts and add appropriate end treatments or install guardrail where culverts cannot be extended to meet clear zone criteria. (In some cases, culverts do not appear to be functional and may be eliminated.)

Many of the shorter culvert crossings are within areas where parallel guardrail is also needed. For the purpose of the benefit cost analysis, these crossings are included in the cost estimates for the linear guardrail.

An "order of magnitude estimate" of costs associated with culvert extensions was based on the following assumptions.

- All pipes less than 40 feet in length will require an extension to be able to accommodate guardrail.
- The number of culverts that require guardrail is approximately the same as the number of culverts less than 40 feet.
- Some of the culverts may require complete replacement. It is assumed that the County will replace culverts as needed.

 Most culverts are in areas where continuous guardrail is needed on at least one side of the road. This estimate is based on the assumption that, on the average, a short guardrail section is needed on only one side of the road.

Table 15 Potential countermeasures for CR 835

Countermeasure	Distance (miles)	Cost	B/C	NPV
Upgrade pavement markings to include edge line rumble stripes. – (covered under				
4.2 Pavement markings - tangent sections)				
Construct guardrail along canals, including guardrail at culvert crossings or extension of culverts various locations	11.9	\$2,116,617	1.98	\$134,369

Note: Benefit and cost calculations for guardrail reflect the incremental benefits and costs after pavement markings are installed.

Mileage is estimated from aerial photography for the purpose of the benefit analysis. More detailed data collection and analysis will be required to develop specific improvement projects.

Factors affecting implementation

Right of way	No apparent additional right of way required; confirm with detailed examination of right of way maps where widening is needed.
Environmental impacts	Other pavement widening, shoulder work may involve additional fill in canals which will require environmental permits. Replacement or extension of cross culverts will require coordination with regulatory agencies and may require permits.
Utilities	Shoulder paving will require coordination with all utilities; coordination with railroad is also required at two locations for any pavement or shoulder work.
Community impacts	None expected.

> CR 846 from Collier County Line to CR 833

CR 833
CR 846

Figure 39 CR 846

Land use along this entire corridor is agricultural. The road segment includes one 90 degree curve at the intersection of Roberts Ranch Road, and two other minor curves. A major canal lies along the north edge of the road through most of the east- west segment (six miles) with smaller ditches along the south side.

Guardrails are in place at most critical canal or ditch crossings.

Ten crashes were reported during the analysis period, two involved animals. All others were lane departures with six involving overturning or off-road vehicles. Three vehicles entered a canal. One of these involved a fatality. Of the total eight lane departures, only two occurred during non-daylight hours. Overall, the frequency of crashes on this road is consistent with the average crash frequency for other roads in Hendry County.

Table 16 Crashes on CR 846

Crash Type	Total	Fatal	Injury	PDO	In Canal	Day	Non day
Ped/bike	0						
Animal	2		2				2
Intersect/driveway	0						
Lane depart- on road	2		2			1	1
Lane depart - off-road	6	1	4	1	3	5	1
Totals	10	1	8	1	3	6	4

Figure 40 Guardrail protection at major canal crossing

Figure 41 "Unprotected" culvert crossing on CR 846

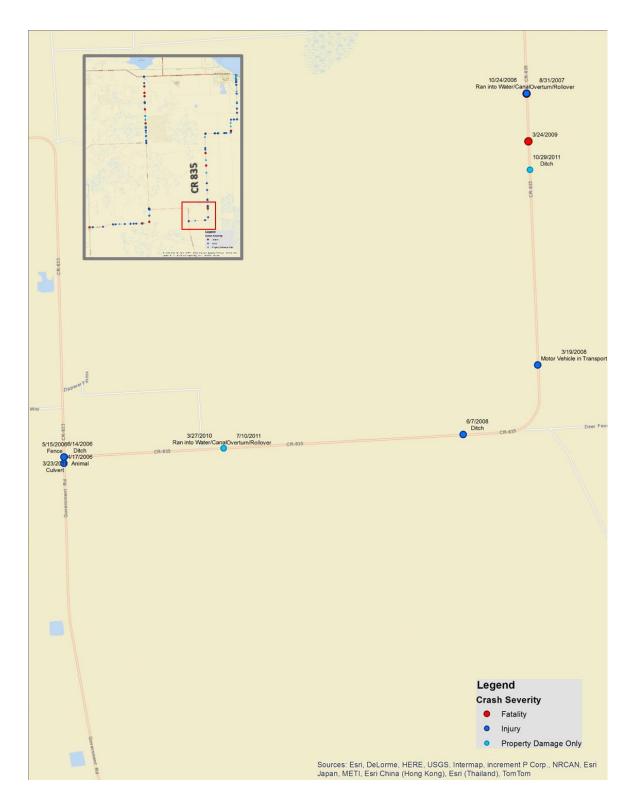
Addition of guardrail along CR 846 appears to be less urgent than on CR 835. In view of the limited budget available for funding these improvements, further guardrail upgrades in this corridor are not identified as candidates for HSIP funding at this time.

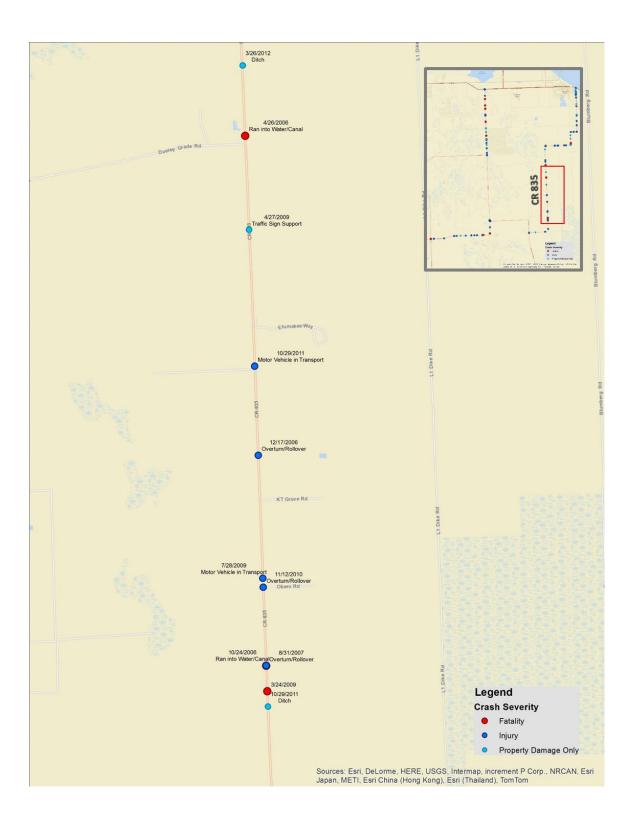
Countermeasure:

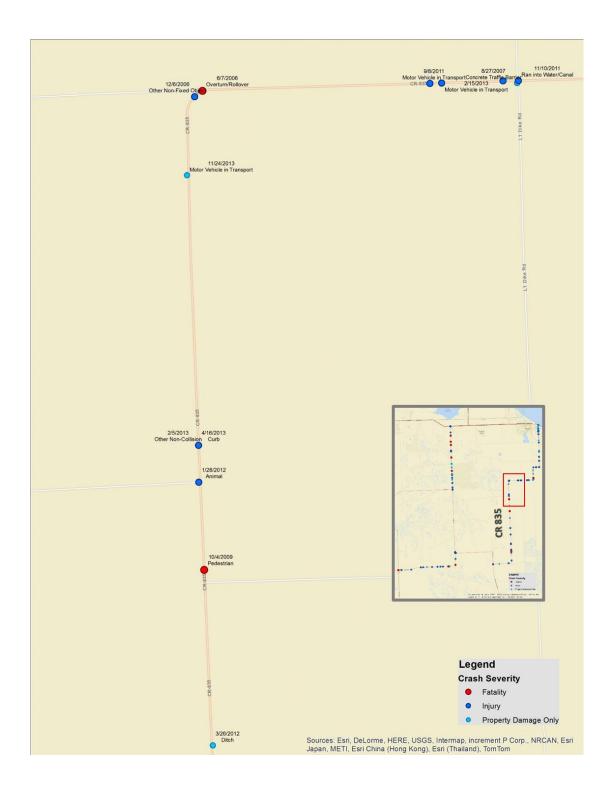
• Upgrade pavement marking (addressed in area-wide project).

Table 17 Potential countermeasures for CR 846

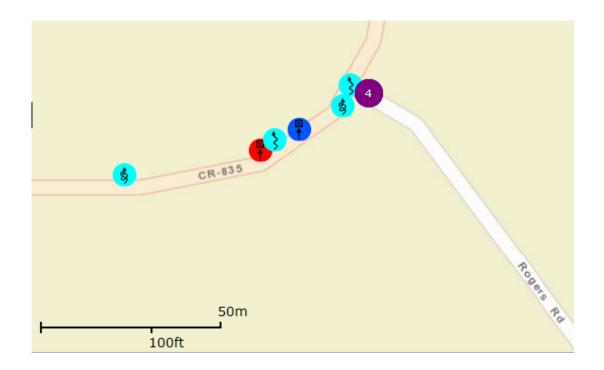
Countermeasure	Distance (miles)	Cost	B/C	NPV
Upgrade pavement markings to include edge line rumble stripes – (covered under				
4.2 Pavement markings - tangent sections)				

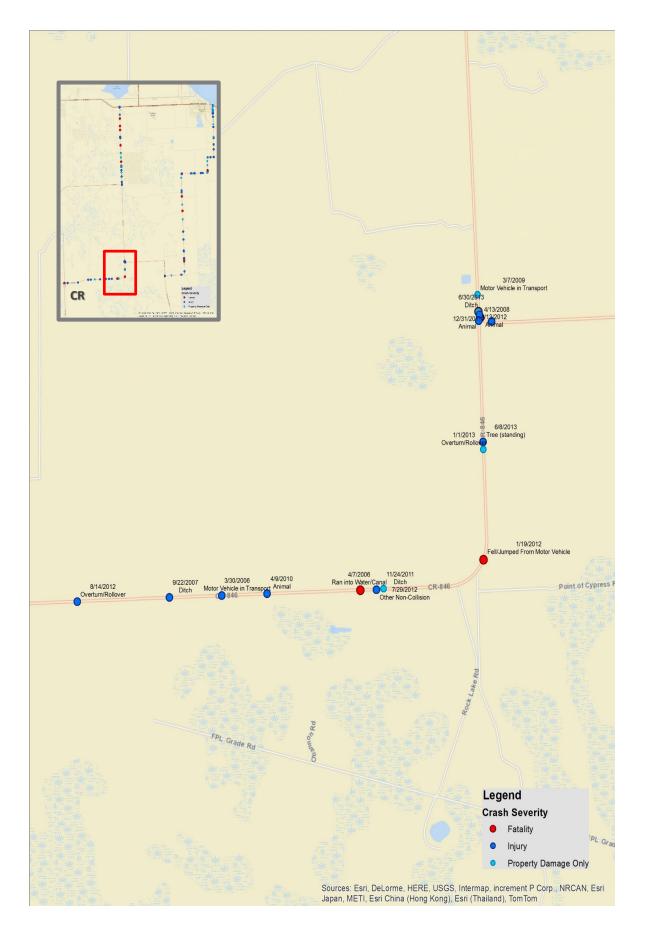

APPENDIX A - CRASH MAPS


CR 833




CR 835





CR 835 at Rogers Road

CR 846 from Collier County Line to CR 833

APPENDIX B - BASIS OF COST ESTIMATES

Crash Costs				
Two-lane rural road crash costs	\$ 402,003			
Countermeasure / Activity	Cost	Units	Lifespan	Item Number (from FDOT Average Unit Cost)
Advanced Warning sign	\$ 252.02	each	6	0700 20 11
Chevron	\$ 252.02	each	6	0700 20 11
Stop sign	\$ 252.02	each	6	0700 20 11
Curve warning sign with advisory speed plat	\$ 336.20	each	6	based on 0700 20 11
Remove single post sign	\$ 15.18	each	6	0700 20 60
Object marker sign	\$ 126.78	each	6	0705 10 3
Audible Edgelines	\$ 0.60	feet	6	0701 16111
Edgelines for rumble striping	\$ 0.66	feet	6	0711 11151
Ground in place stripes	\$ 1,024.41	mile	6	0546 72 51
Centerlines	\$ 0.58	feet	6	0711 15211
RPMs	\$ 3.01	each	6	0706 3
Transverse rumble strips	\$ 3.23	feet	6	713102111
Stop bar (12" preformed tape)	\$ 1.88	feet	6	71111123
Retroreflective strip for sign post	\$ 60.00		6	N/A
Guardrail	\$ 17.07		25	0536 1 1
Guardrail removal	\$ 1.29		25	0536 73
Guardrail anchorage assembly	\$ 1,818.39		25	0536 85 22
Culvert with mitered end sections	\$ 11,691.32		25	430174130 and 430982129
Culvert extension	\$ 99.07		25	430174130
Flashing Beacon	\$ 5,624.39		25	0700 90 11
Luminaires on signal poles	\$ 418.44		6	0715 11111
Widen and pave shoulder (basic)	\$ 350,000.00		25	see group section below
Widen and pave shoulder (basic) Widen and pave shoulder (with added work)	· · · · ·		25	see group section below
Mobilization	10%		23	0101 1
Maintenance of Traffic	10%			0102 1
Contingency and engineering	25%	20		
CEI	15%			
Interest rate	4.0%			
	1.070			
Pavement widening cost				
Basis of estimate:	Cost estimate projects on con		-	oject cost per mile for simila et 2.
	Data obtained based on descri		-	m and projects selected
	Projects samp	led were		Bradford, Columbia, and
	Dixie Counties			
Assumptions:	Completed cro lanes with 2' p			a minimum 2-11' travel safety edge.
	Work will inclu (or design exc			ecessary to meet standards
				adjustment or addition if
				sions and end sections
				ns for roadside culverts
				conform to MUTCD - signing at intersections
				pavement markings triping and RPMs

APPENDIX C - CALCULATION OF BENEFIT/COST RATIOS

Curve Sections

Site: 5 cu	rves on CR 835 and 1 c	urve on C	R 846
Length:	Rogers Curve		1350 feet
	CR 835 Curve #2		1700 feet
	Blumberg Curve		1800 feet
	CR 835 Curve #4		2050 feet
	Deer Fence Canal Curv	/e	2450 feet
	CR 846 Curve		2975 feet

	easures							Annuity	1	Annual
Countermeasure		Unit	C	ost/Unit	Number		Cost	Factor		Cost
Curve Signs (MUTC	CD 2C-2)									
Rogers Curve on CF	R 835									
Advanced warning	signs	ea	\$	252.02	2	\$	504	5.24	\$	90
Curve warnings sig	ins with advisory speed									
plates		ea	\$	336.20	2	\$	672	5.24		128
Chevrons		ea	\$	252.02	12	\$	3,024	5.24		57
Turn arrow		ea	\$	252.02	2	\$	504	5.24	\$	9
Sign removal		ea	\$	15.18	8	\$	121	5.24	\$	2
Reflective strip for	sign posts	ea	\$	60.00	18	\$	1,080	5.24	\$	20
Second Curve on CI	R 835 (North to South)									
Advanced warning	signs	ea	\$	252.02	2	\$	504	5.24	\$	9
Curve warnings sig	ns with advisory speed									
plates		ea	\$	336.20	2	\$	672	5.24	\$	12
Chevrons		ea	\$	252.02	16	\$	4,032	5.24	\$	76
Turn arrow		ea	\$	252.02	2	\$	504	5.24	\$	90
Sign removal		ea	\$	15.18	8	\$	121	5.24	\$	2
Reflective strip for	sign posts	ea	\$	60.00	22	\$	1,320	5.24	\$	25
Blumberg Curve on		1								
Advanced warning		ea	\$	252.02	2	\$	504	5.24	\$	9
-	ins with advisory speed	1								
plates	51	ea	\$	336.20	2	\$	672	5.24	\$	12
Chevrons		ea	\$	252.02	16	\$	4,032	5.24	\$	76
Turn arrow		ea	\$	252.02	2	\$	504	5.24		9
Sign removal		ea	\$	15.18	8	\$	121	5.24		2
Reflective strip for	sign posts	ea	\$	60.00	22	\$	1,320	5.24		25
Advanced warning	835 (North to South) signs ms with advisory speed	ea ea	\$	252.02 336.20	2	\$	504 672	5.24		9
Chevrons		ea	\$	252.02	20	\$	5,040	5.24		96
Turn arrow		ea	\$	252.02	20	\$	504	5.24		9
Sign removal		ea	\$	15.18	8	\$	121	5.24		2
Reflective strip for	sign posts	ea	\$	60.00	26	\$	1,560	5.24		29
Deer Fence Canal R		cu	Ψ	00.00	20	Ψ	1,500	5.21	Ψ	27
Advanced warning		ea	\$	252.02	2	\$	504	5.24	\$	90
-	ans with advisory speed	ca	Ψ	252.02	2	Ψ	504	5.24	Ψ	
plates	ans with advisory speed	ea	\$	336.20	2	\$	672	5.24	¢	123
Chevrons		ea	\$	252.02	24	\$	6.048	5.24		1,154
Turn arrow		ea	۰ ۶	252.02	24	.» Տ	504	5.24		1,15
Sign removal		ea	\$	15.18	8	\$	121	5.24		2
Reflective strip for	sign posts	ea	\$	60.00	30	\$	1,800	5.24		343
CR 846 Curve	sign posts	ca	φ	00.00	50	φ	1,800	5.24	φ	
Advanced warning	signs	ea	\$	252.02	2	\$	504	5.24	¢	90
0	ans with advisory speed	ł	ф	232.02	2	Ф	504	5.24	φ	
plates	ans with advisory speed		\$	336.20	2	\$	672	5.24	¢	128
Chevrons		ea	\$	252.02		\$		5.24		
		ea			28		7,057			1,340
Turn arrow		ea	\$	252.02	2	\$	504	5.24		90
Sign removal	-	ea	\$	15.18	8	\$	121	5.24		23
Reflective strip for	01	ea	\$	60.00	34	\$	2,040	5.24	\$	389
	rkings	Į	¢	0.50.00		¢			¢	
Other Signs and Mar		ea	\$	252.02	3	\$	756	5.24		14
Stop Sign		ea	\$	1.88	45	\$	85	5.24		1
Stop Sign Stop Bar						\$	50,007		\$	9,53
Stop Sign Stop Bar Subtotal										
Stop Sign Stop Bar Subtotal Mobilization				10%		\$	5,001		\$	95
Stop Sign Stop Bar Subtotal Mobilization MOT				10%		\$ \$	5,001 5,001		\$ \$	95 95
Stop Sign Stop Bar Subtotal Mobilization						\$	5,001		\$	95

O SIGNING UPGRADES AT SIX CURVES - LEVEL 1

O SHOULDERS AND PAVEMENT MARKINGS AT SIX CURVES - LEVEL 2

Level 2 Countermeasures								
						Annuity		Annual
Countermeasure	Unit	Cost/Unit	Number		Cost	Factor		Cost
All countermeasures from Level 1	total			\$	50,007		\$	9,539
Pavement Markings								
Rogers Curve on CR 835								
Centerline	lf	\$ 0.58	2,700	\$	1,554	5.24	\$	296
Edgeline	lf	\$ 0.66	2,700	\$	1,782	5.24	\$	340
Ground in place rumble	mile	\$ 1,024.41	0.511	\$	524	5.24	\$	100
RPMs	ea	\$ 3.01	608	\$	1,829	5.24	\$	349
Rumble Strips	lf	\$ 3.23	288	\$	931	5.24	\$	178
Second Curve on CR 835 (North to South)								
Centerline	lf	\$ 0.58	3,400	\$	1,957	5.24		373
Edgeline	lf	\$ 0.66	3,400	\$	2,244	5.24		428
Ground in place rumble	mile	\$1,024.41	0.644	\$	660	5.24		126
RPMs	ea	\$ 3.01	765	\$	2,303	5.24	\$	439
Blumberg Curve on CR 835	1.6	<u> </u>	2 600	•	0.070		•	
Centerline	lf	\$ 0.58	3,600	\$	2,072	5.24	•	395
Edgeline	lf	\$ 0.66	3,600	\$	2,376	5.24		453
Ground in place rumble RPMs	mile	\$ 1,024.41 \$ 3.01	0.682	\$	698	5.24	•	133
Fourth Curve on CR 835 (North to South)	ea	\$ 3.01	810	\$	2,438	5.24	¢	465
Centerline	lf	\$ 0.58	4,100	\$	2,360	5.24	¢	450
Edgeline	lf	\$ 0.66	4,100	φ \$	2,300	5.24		516
Ground in place rumble	mile	\$ 1,024.41	0.777	\$	795	5.24		152
RPMs	ea	\$ 3.01	923	\$	2,777	5.24		530
Deer Fence Canal Rd Curve		<i>v</i> 0.01	510	Ŧ	_,	0.21	•	
Centerline	lf	\$ 0.58	4,900	\$	2,820	5.24	\$	538
Edgeline	lf	\$ 0.66	4,900	\$	3,234	5.24		617
Ground in place rumble	mile	\$ 1,024.41	0.928	\$	951	5.24		181
RPMs	ea	\$ 3.01	1,103	\$	3,319	5.24	\$	633
CR 846 Curve								
Centerline	lf	\$ 0.58	5,950	\$	3,425	5.24	\$	653
Edgeline	lf	\$ 0.66	5,950	\$	3,927	5.24	\$	749
Ground in place rumble	mile	\$ 1,024.41	1.127	\$	1,154	5.24	\$	220
RPMs	ea	\$ 3.01	1,339	\$	4,030	5.24	\$	769
All Curves								
Widen and Resurface	mile	\$ 500,000	2.33	\$	1,167,140	15.62	\$	74,711
Milling at Blumberg	sy	2.3	4,800	\$	11,040	15.62	\$	707
Levelling/paving at Blumberg	sy	84.5	4,800	\$	405,600	15.62	\$	25,963
Subtotal				<u> </u>	1,686,652		\$	121,005
Mobilization		10%		\$	168,665		\$	12,100
MOT		10%		\$	168,665		\$	12,100
CEI		15%		\$	252,998		\$	18,151
Engineering and contingencies		25%		\$	421,663		\$	30,251
Total Cost				\$	2,698,644		\$	193,607

Level 3 Countermeasures						
					Annuity	Annual
Countermeasure	Unit	Cost/Unit	Number	Cost	Factor	Cost
All countermeasures from Level 2						
(includes Level 1)	total			\$ 1,686,652		\$ 121,005
Rogers Curve on CR 835						
Flashing warning beacon	ea	\$ 5,624.39	1	\$ 5,624	15.62	\$ 360
Luminaire	ea	\$ 418.44	2	\$ 837	5.24	\$ 160
Guardrail removal	lf	\$ 1.29	60	\$ 77	15.62	\$ 5
Guardrail	lf	\$ 17.07	415	\$ 7,084	15.62	\$ 453
Guardrail end	ea	\$ 1,818.39	4	\$ 7,274	15.62	\$ 466
Object marker sign	ea	\$ 126.78	2	\$ 254	5.24	\$ 48
Blumberg Curve on CR 835						
Guardrail	lf	\$ 17.07	1,300	\$ 22,191	15.62	\$ 1,420
Guardrail end	ea	\$ 1,818.39	4	\$ 7,274	15.62	\$ 466
Object marker sign	ea	\$ 126.78	4	\$ 507	5.24	\$ 97
Deer Fence Canal Rd Curve						
Guardrail removal	lf	\$ 1.29	20	\$ 26	15.62	\$2
Guardrail	lf	\$ 17.07	200	\$ 3,414	15.62	\$ 219
Guardrail end	ea	\$ 1,818.39	4	\$ 7,274	15.62	\$ 466
Object marker sign	ea	\$ 126.78	4	\$ 507	5.24	\$ 97
Subtotal				\$ 1,748,994		\$ 125,262
Mobilization		10%		\$ 174,899		\$ 12,526
МОТ		10%		\$ 174,899		\$ 12,526
CEI		15%		\$ 262,349		\$ 18,789
Engineering and contingencies		25%		\$ 437,249		\$ 31,315
Total Cost				\$ 2,798,391		\$ 200,419

• GUARDRAIL AND OTHER AT THREE CURVES - LEVEL 3

 CURVE BENEFIT CALCULATIONS 	0	CURVE	BENEFIT	CALCUL	ATIONS
--	---	-------	---------	--------	--------

Curve B	enefit Calc	ulations					
All Relat	ed Crashes	(Rogers,	for Level 3 Blumberg, er Fence)				
Severity	Number of Crashes	Severity	Number of Crashes				
K	1	K	1				
А	1	А	1				
В	3	В	2				
С	3	С	3				
0	8	0	8				
Total	16	Total	15				
Curve	Warning						
Signs	s CMF	Curve Che	vrons CMF	Level 1 Com	bined CMF		
Fatal	0.82	Fatal	0.78	Fatal	0.6396		
Injury	0.82	Injury	0.78	Injury	0.6396		
PDO	0.82	PDO	0.78	PDO	0.6396		
	Audible nes CMF		Lane and oulder CMF	Advance Cu CM			ne Curve s CMF
Fatal	0.873	Fatal	0.8722	Fatal	0.94	Fatal	0.76
	0.873		0.8722		0.94		0.76
Injury PDO	0.873	Injury PDO	0.8722	Injury PDO	0.94	Injury PDO	0.76
I DO	0.875	TDO	0.8722	100	0.94	TDO	0.70
Level 2	Combined						
C	MF	Guardr	ail CMF	Level 3 Com	bined CMF		
Fatal	0.3373	Fatal	0.56	Fatal	0.1889		
Injury	0.3373	Injury	0.53	Injury	0.1788		
PDO	0.3373	PDO	1.00	PDO	0.3373		
	-	Benefit/Cost	Ratio				
		Level 1	Level 2	Level 3			
Crashes I	Reduced	5.77	10.60	11.70			
Benefit		\$ 2,318,110	\$ 4,262,711	\$4,704,713			
Annual B	enefit	\$ 289,764	\$ 532,839	\$ 588,089			
Annual C	ost	\$ 15,263	\$ 193,607	\$ 200,419			
B/C Ratio)	18.98	2.75	2.93			
Net Prese	ent Value	\$ 274,501	\$ 339,232	\$ 387,670			

Tangent Sections

		Tan	gent S	ections for l	Pavement	t M	arkings			
Site: CR	833, CR 83	5, and CR	846							
Length [.]	CR 833	10 10	Miles	SR 80 to C	R 832 (SR	80	to Java Rd	for Guardr	aiD	
Bengun	CR 846		Miles	CR 833 to 0			10 04 14 144	lor ouuru	u11)	
	CR 835		Miles	SR 80 to C						
Pavemo	ent Marking	g Counter	measu	ıres						
a ,			.	0 //11 /	NT 1		A (Annuity		Annual
	measure		Unit	Cost/Unit	Number		Cost	Factor		Cost
Paveme	ent Markings		10	504.007	•	202 121	5.04	Φ.	
	Centerline		lf lf	\$ 0.58 \$ 0.66	524,897	\$	302,131	5.24		57,635
	Edge line	1		\$ 0.66 \$ 1.024.41	524,897	\$	346,432	5.24	\$ \$	66,086
	Ground in p	lace	mile	\$ 1,024.41	99.41	\$	101,839	5.24		19,427
Subtatal	RPMs		ea	\$ 3.01	13,122	\$ \$	39,498	5.24	\$ \$	7,535
Subtotal Mobiliza				400/		-	789,900		•	150,683 15,068
				10% 10%		\$ \$	78,990		\$	
MOT CEI						ֆ Տ	78,990		\$ \$	15,068
	ring and con	tingonoiog		15% 25%		ֆ \$	118,485		•	22,602
Total Co		ungencies		2370			197,475 1,263,840		\$3 \$	7,670.70 241,092
Total Co	JSL					Φ	1,203,640		Φ	241,092
Benefit	s									
				Crashes Im	pacted by					
All	Related			Mark						
	rashes			Improve	-					
	Number of				Number					
Severity	Crashes			Severity	of					
К	11			K	11					
А	4			Α	4					
В	18			В	14					
С	15			С	12					
0	11			0	9					
Total	59			Total	50					
Audibl	le Edgeline						Combined C	CMF for		
	CMF		RF	PM CMF			Markii	ngs		
Fatal	0.89		Fatal	0.76		Fat	al	0.6764		
Injury	0.89		Injury	0.76		Inj		0.6764		
PDO	0.89		PDO	0.76		PD	-	0.6764		
Edgeline	e and RPM c	rashes red	uced [.]	16.18						
-	nly crashes re			2.16						
Ro	nefit/Cost (alculation	15							
	Reduced		18.34							
Benefit		\$ 7,37	2,735							
Annual	Benefit		2,755							
Annual			1,092							
B/C Rat		Ψ 24	3.82							
			5.02							

O PAVEMENT MARKINGS - LEVEL 1

GU			· 000 -						
Site: CR	833								
Length:	CR 833	4.03	miles	Java Rd to	SR 80 for	r Gu	ardrail		
C	-1 C 4								
Guardra	ail Counter	measures						Annuity	Annual
Counter	measure		Unit	Cost/Unit	Number		Cost	Factor	Cost
Guardra			Ollit	0050/01110	Truiniber		COSt	Tuetor	 0051
	Install new	guardrail	lf	\$ 17.07	21,300	\$	363,591	15.62	\$ 23,274
011 000	Anchorage	-	ea	\$ 1,818.39	8	\$	14,547	15.62	931
	Object Mar	-	ea	\$ 126.78	8	\$	1,014	5.24	193
Subtotal						\$	379,152		\$ 24,399
CEI				10%		\$	37,915		\$ 2,440
МОТ				10%		\$	37,915		\$ 2,440
CEI				15%		\$	56,873		\$ 3,660
Enginee	ring and con	tingencies		25%		\$	94,788		\$ 6,100
Total Co						\$	606,644		\$ 39,038
Benefit	Calculation	ns							
	Related								
	ashes								
	Number of								
Severity	Crashes								
K	3								
А	0								
В	3								
С	2								
0	0								
Total	8								
			Pavemer	nt Markings					
Guard	lrail CMF		C	CMF			Combined	CMF	
Fatal	0.56		Fatal	0.89		Fat	al	0.4984	
Injury	0.53		Injury	0.89		Inju	ıry	0.4717	
PDO	1		PDO	0.89		PD	0	0.89	
Paveme	nt markings	crash redu	ction:						0.88
	nt markings			reduction:					4.1463
Crash re	eduction from	n guardrails	s with pave	ement markin	gs previou	ısly	implemente	ed:	3.2663
R	enefit/Cost	t Calculati	ons			-			
	Reduced	Juculut	3.27						
Benefit		\$	1,313,062						
Annual	Benefit	\$	164,133						
Annual		\$	39,038						
B/C Rat		*	4.20						
	sent Value	\$	125,095						

O GUARDRAIL AT CR 833 - LEVEL 2

0	GUARDRAIL	AT	CR	835	AT	L-1	CANAL	- LEVEL	. 2
---	-----------	----	----	-----	----	-----	-------	---------	-----

T	CD 927	0.07		110 10	1					
Length:	CR 835	0.06	miles	L1 Canal C	rossing					
Guardra	il Counter	measures								
		lieusures		~ ~			~	Annuity	Annual	
Counterr	neasure		Unit	Cost/Unit	Number		Cost	Factor	Cost	
L1 Cana	l Crossing									
	Guardrail - F		lf	\$ 17.07	550	\$	9,389	15.62		
	Guardrail - b		lf	\$ 38.86	250	\$	9,715	15.62		
	Shop bent s		lf	\$ 19.44	100	\$	1,944	15.62		
	Anchorage	-	ea	\$ 1,818.39	4	\$	7,274	15.62		
	Object Mark		ea	\$ 126.78	4	\$	507	5.24		
		ge warning signs	ea	\$ 252.02	2	\$	504	5.24		
	intersection	ahead signs	ea	\$ 252.02	2	\$	504	5.24		
Subtotal						\$	29,836		\$ 2,102	
Mobilizat	ion			10%		\$	2,984		\$ 210	
МОТ				10%		\$	2,984		\$ 210	
CEI				15%		\$	4,475		\$ 315	
	ing and con	tingencies		25%		\$	7,459		\$ 525	
Total Co	st					\$	47,738		\$ 3,363	
Benefit	Calculation	ns								
	Related ashes									
Severity	Number of									
	Crashes									
K	0									
A	0									
B	0									
C	0									
0	1									
Total	1									
Const	- 1 CME		D	4 M			Court in a 1	CME		
	rail CMF			nt Markings		F (Combined			
Fatal	0.56		Fatal	0.89		Fata		0.4984		
Injury	0.53		Injury	0.89		Inju		0.4717		
PDO	1		PDO	0.89		PD	U	0.89		
Doverne	t morting -	arash radiation							0.11	
		crash reduction:	och =	ioni					0.11	
		and guardrails ci				1	nont-1		0.11	
crash re	auction from	n guardrails with	pavement	markings pro	eviousiy in	ipier	nented:		0	
	Benefit/Co	ost Calculations	5							
Crashes	Reduced		0.00							
Benefit		\$	-							
Annual E	Benefit	\$	6,649	**						
Annual C	Cost	\$	3,363							
B/C Rati		-	1.98	**						
	ent Value	\$	3,285	**						
	**	The traditional "s					-			
		the value of addin								
		period that would					-			s did
		occur at locations			-					
		The corridor-wide		used as the e	stimate of t	he b	enefit for ad	ding guardra	il at this short	
		section within the	corridor.							

GUARDRAIL AT CR 835 VARIOUS LOCATIONS FROM CR 833 TO SR 80 -LEVEL 2

Site: CR	835								
Length:	CR 835	11.94	miles	Davidson to	Old SR 8	0, 2.5 miles No	rth of Roge	rs F	Rd to
Cuandr	ail Counter	maacumaa							
	measure	measures	Unit	Cost/Unit	Number	Cost	Annuity Factor		Annual Cost
	- Davidson t	to old SR							
80									
	Install new	•	lf	\$ 17.07	2,640	\$ 45,065	15.62		2,885
	Anchorage		ea	\$ 1,818.39	2	\$ 3,637	15.62	•	233
CD 925	Object Mar -2.5 miles no		ea	\$ 126.78	2	\$ 254	5.24	\$	48
	to Joshua	51 11 01							
Rogers	Install new	guardrail	lf	\$ 17.07	7,920	\$ 135,194	15.62	\$	8,654
	Anchorage	-	ea	\$ 1,818.39	16	\$ 29,094	15.62		1,862
	Object Mar	2	ea	\$ 126.78	16	\$ 2,028	5.24	\$	387
CR 835	- CR 833 to	1 mile							
south of	Dooley Gra	de							
	Install new	0	lf	\$ 17.07	52,500	\$ 896,175	15.62		57,366
	Anchorage	5	ea	\$ 1,818.39	22	\$ 40,005	15.62		2,561
	Object Mar	ker	ea	\$ 126.78	22	\$ 2,789	5.24		532
	Extensions		lf	\$ 99.07	400	\$ 39,628	15.62	\$	2,537
Culvert	Guardrail		lf	\$ 17.07	2 000	\$ 51,210	15.62	\$	2 2 7 9
	Install new Anchorage	•	n ea	\$ 1,818.39	3,000	\$ 51,210 \$ 72,736	15.62 15.62		3,278
	Object Mar	-	ea	\$ 126.78	40	\$ 5,071	5.24		4,030 967
Subtotal		Kei	ca	\$ 120.78	+0	\$ 1,322,886	5.24	\$	85,966
CEI				10%		\$ 132,289		\$	8,597
мот				10%		\$ 132,289		\$	8,597
CEI				15%		\$ 198,433		\$	12,895
Enginee	ring and con	tingencies		25%		\$ 330,721		\$	21,492
Total Co	ost					\$ 2,116,617		\$	137,546
	Calculation	ns							
	Related ashes								
Severity	Number of								
Severity	Crashes								
К	1								
Α	2								
в	4								
С	6								
0	5								
Total	18								
0			D			<u> </u>			
	Irail CMF		Fatal	nt Markings		Combined			
Fatal	0.56			0.89		Fatal	0.4984		
Injury PDO	0.33		Injury PDO	0.89		Injury PDO	0.4717		
100	1		100	0.07		100	0.07		
Paveme	nt markings	crash redu	ction:						1.98
	nt markings			reduction:					7.3912
Crash re	eduction from	n guardrails	s with pave	ement markin	gs previou	isly implemente	ed:		5.4112
R	enefit/Cost	Calculati	ons						
	Reduced	Jacunt	5.41						
Benefit		\$	2,175,319						
Annual	Benefit	\$	271,915						
Annual	Cost	\$	137,546						
B/C Rat	tio		1.98						
	sent Value	\$	134,369						